Future too warm for baby sharks
New research has found as climate change causes the world’s oceans to warm, baby sharks are born smaller, exhausted, undernourished and into environments that are already difficult for them to survi
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au
Scientists have found that as the world undergoes profound environmental change, identifying and protecting ‘novel’ communities of species can help prevent extinctions within vulnerable ecosystems.
Professor John Pandolfi and Dr Timothy Staples from the ARC Centre of Excellence for Coral Reef Studies at The University of Queensland (CoralCoE at UQ) are the lead authors of a new study in Science that looked at how combinations of plankton species changed across the world’s marine ecosystems in the past 66 million years. From this, their team developed a world first method to detect ‘novel’ communities of species across all ecosystems.
“A novel ecological community is one with combinations of species that are different to any past observations from that site,” Prof Pandolfi said. “These different species combinations can be due to new species arriving in the community, existing species leaving, or species becoming rarer or more common.”
“We found that when novel communities formed, existing species were twice as likely to disappear from the community permanently, representing a ‘local’ extinction.”
“Species in the novel community were also more likely to be new arrivals that had never been observed in the community before.”
An example of a modern novel community is the coral reefs of the Caribbean, where the two once dominant species of branching coral are now rare. Those reefs are now home to new, or novel, communities of corals. The loss of the branching corals is due to the impacts of overfishing, changes in water quality, and climate change—resulting in new configurations of coral species within the Caribbean reef communities. And the shift means the benefits of the reef are now different: different species means different inhabitants and functions.
“The challenge is to manage at risk or vulnerable areas like this where novel communities exist, or where they’re in the process of forming,” Prof Pandolfi said.
“To do this we need to understand the changes in species composition we see in novel communities, as well as what is driving these changes. To achieve these goals, we need to be able to reliably identify when a novel community has emerged.”
The study outlines the first standardised, quantitative methodology for determining the existence of novel ecological communities. The researchers used a database of marine plankton over millions of years, but the methodology was designed to be applied more generally.
“We came up with a measure of novelty that can be used with community data from any time scale, organism or ecosystem, so comparative approaches to the study of novelty are now possible,” Dr Staples said. “In this study, we applied our methodology to the past 66 million years, but it would work just as well on much shorter time frames.”
The researchers examined the marine plankton record using a global set of microfossil data from deep sea drilling cores— the NSB marine microfossil database, created and run by the Museum für Naturkunde in Berlin. By incorporating updated taxonomy and age models they built community data for species across geological time.
Prof Pandolfi said while novelty was rare, extinction was an important component. And after novel communities emerged, subsequent communities were more likely to develop into yet other novel states.
“Novelty begets novelty,” Prof Pandolfi said. “And the likelihood of extinction was higher when novel communities emerged.”
He said the pressures that cause communities to become novel in the first place need to be relieved. “Otherwise we may end up with cascading novelty, where the emergence of novel communities drives further novelty, including the loss of existing, native, species.”
Prof Pandolfi says this means when a novel community is identified it needs attention and effective preventive management. He also says future studies need to identify novel communities within vulnerable ecosystems, such as the Great Barrier Reef. “At the end of the day that’s where we want to go to test this,” he said.
Though the time frame of evolutionary change is generally much slower than the timeframe of change currently occurring on the Great Barrier Reef, there are signs that novelty communities may be emerging there. The assemblage of corals on the reef are not what they were five or ten years ago.
“Our novelty framework is equally applicable to investigate the Great Barrier Reef at this ecological scale,” Dr Staples said.
“Modern novel ecological communities may need to be managed effectively to prevent the propagation of subsequent novel communities, because of the associated risk of increased extinction,” Prof Pandolfi said.
“We can’t just throw in the towel and let those ecosystems degrade, we need to arrest this progression.”
PAPER
Pandolfi J, Staples T, Kiessling W. (2020). ‘Increased extinction in the emergence of novel ecological communities’. Science. DOI: 10.1126/science.abb3996
IMAGES
Photos are available for media use here. Please note these are for single use with this story only, not for any other story. Credit must be given to the photographer as in the file name. No archival permissions are granted.
CONTACT
Prof John Pandolfi (Australia, AEST)
P: +61 (0)400 982 301
E: j.pandolfi@uq.edu.au
Dr Timothy Staples (Australia, AEST)
P: +61 (0) 412 506 078
E: timothy.staples@uqconnect.edu.au
FOR FURTHER INFORMATION
Melissa Lyne (Australia, AEST)
Media Manager, Coral CoE
P: +61 (0)415 514 328
E: melissa.lyne@jcu.edu.au
New research has found as climate change causes the world’s oceans to warm, baby sharks are born smaller, exhausted, undernourished and into environments that are already difficult for them to survi
A new study shows the coastal protection coral reefs currently provide will start eroding by the end of the century, as the world continues to warm and the oceans acidify. A team of researchers led
A team of scientists led by the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) won one of the nation’s top science awards at tonight’s ‘Oscars of Australian science’, the Eureka P
An analytical tool will be used to assess the climate risks facing historic World Heritage sites in Africa—the ruins of two great 13th century ports and the remains of a palace and iron-making indus
Abstract: It is a little over a decade since research commenced into the effects of anthropogenic ocean acidification on marine fishes. In that time, we have learned that projected end-of-century
Abstract: Increased uptake of carbon dioxide from the atmosphere has caused the world’s ocean to become more acidic. Different marine habitats are known to have varying ranges of CO2 across mul
Abstract: The Allen Coral Atlas (http://allencoralatlas.org) partnership uses high-resolution satellite imagery, machine learning, and field data to map and monitor the world’s coral reefs at unp
Abstract: Climate change is causing the average surface temperature of the oceans to rise and increasing the frequency and intensity of marine heatwaves. In addition, absorption of additional CO2
Abstract: Marine environments are a concealing medium, where observations of natural fish behavior are challenging. In particular, the geographic and depth distributions of migratory top predators ar
Abstract: Invasive species management can be the the subject of debate in many countries due to conflicting ecological, ethical, economic, and social reasons, especially when dealing with a species s
Abstract: Ocean acidification, the increase in seawater CO2 with all its associated consequences, is relatively well understood in open oceans. In shelf seas such as the Great Barrier Reef, processe
Abstract: The backdrop of legends and movies, the deep sea has always been unfathomable because we had no idea what existed there. Once thought to be barren of life, we now know this couldn’t be
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au