Reef fish futures foretold
An international group of scientists is predicting markedly different outcomes for different species of coral reef fishes under climate change – and have made substantial progress on picking the ‘
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au
Scientists have found that high carbon dioxide levels cause squid to bungle attacks on their prey.
PhD candidate Blake Spady from the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) at James Cook University (JCU) led the investigation. He said that the oceans absorb more than one-quarter of all the excess carbon dioxide (CO2) released into the atmosphere by humans and this uptake of additional CO2 causes seawater to become more acidic.
“Climate models project that unless there is a serious commitment to reducing emissions, CO2 levels will continue increasing this century to reach levels that will have far-reaching effects on sea life,” he said.
Mr Spady said the team chose to study cephalopods (a group that includes squid, cuttlefish and octopuses) because while most previous behavioural studies have focused on fishes, the effects of elevated CO2 on highly active invertebrates is largely unknown.
“Cephalopods also prey on just about anything they can wrap their arms around and are themselves preyed upon by a wide range of predator species, so they occupy an important place within marine food webs.”
The scientists tested the effects of elevated CO2 on the hunting behaviours of pygmy squid and bigfin reef squid.
“For pygmy squid, there was a 20% decrease in the proportion of squid that attacked their prey after exposure to elevated CO2 levels. They were also slower to attack, attacked from further away, and often chose more conspicuous body pattern displays at elevated CO2 conditions.
Bigfin reef squid showed no difference in the proportion of individuals that attacked prey, but, like the pygmy squid, they were slower to attack and used different body patterns more often.”
Mr Spady said both species showed increased activity at elevated CO2 conditions when they weren’t hunting, which suggests that they could also be adversely altering their ‘energy budgets’.
“Overall, we found similar behavioural effects of elevated CO2 on two separate cephalopod orders that occupy largely distinct niches. This means a variety of cephalopods may be adversely affected by rising CO2 in the oceans, and that could have significant consequences in marine ecosystems,” said co-author Dr Sue-Ann Watson.
“However, because squid have short lifespans, large populations, and a high rate of population increase, they may have the potential to adapt to rapid changes in the physical environment,” Mr Spady added.
“The fast lifestyle of squid could mean they are more likely to adapt to future ocean conditions than some other marine species, and this is the next question we intend to investigate.”
Paper: Spady, BL, Munday, PL, Watson, S-A (2018). Predatory strategies and behaviours in cephalopods are altered by elevated CO2 Global Change Biology doi: 10.1111/gcb.14098
Images: for media use can be found here. Please credit as marked.
Contacts:
Blake Spady
PhD candidate at Coral CoE/ JCU
Phone: +61 456 777 883
Email: blake.spady@my.jcu.edu.au
Dr. Sue-Ann Watson
Senior Research Fellow, Coral CoE
Phone: +61 7 4781 5270
Email: sueann.watson@jcu.edu.au
Prof. Philip Munday
Reef Research Leader, Coral CoE
Phone: +61 7 47815341
Email: philip.munday@jcu.edu.au
Melissa Lyne
Acting Communications Manager, Coral CoE
Phone: +61 415 514 328
Email: melissa.lyne@jcu.edu.au
An international group of scientists is predicting markedly different outcomes for different species of coral reef fishes under climate change – and have made substantial progress on picking the ‘
New research has found as climate change causes the world’s oceans to warm, baby sharks are born smaller, exhausted, undernourished and into environments that are already difficult for them to survi
A new study shows the coastal protection coral reefs currently provide will start eroding by the end of the century, as the world continues to warm and the oceans acidify. A team of researchers led
A team of scientists led by the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) won one of the nation’s top science awards at tonight’s ‘Oscars of Australian science’, the Eureka P
Abstract: It is a little over a decade since research commenced into the effects of anthropogenic ocean acidification on marine fishes. In that time, we have learned that projected end-of-century
Abstract: Increased uptake of carbon dioxide from the atmosphere has caused the world’s ocean to become more acidic. Different marine habitats are known to have varying ranges of CO2 across mul
Abstract: The Allen Coral Atlas (http://allencoralatlas.org) partnership uses high-resolution satellite imagery, machine learning, and field data to map and monitor the world’s coral reefs at unp
Abstract: Climate change is causing the average surface temperature of the oceans to rise and increasing the frequency and intensity of marine heatwaves. In addition, absorption of additional CO2
Abstract: Marine environments are a concealing medium, where observations of natural fish behavior are challenging. In particular, the geographic and depth distributions of migratory top predators ar
Abstract: Invasive species management can be the the subject of debate in many countries due to conflicting ecological, ethical, economic, and social reasons, especially when dealing with a species s
Abstract: Ocean acidification, the increase in seawater CO2 with all its associated consequences, is relatively well understood in open oceans. In shelf seas such as the Great Barrier Reef, processe
Abstract: The backdrop of legends and movies, the deep sea has always been unfathomable because we had no idea what existed there. Once thought to be barren of life, we now know this couldn’t be
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au