Future too warm for baby sharks
New research has found as climate change causes the world’s oceans to warm, baby sharks are born smaller, exhausted, undernourished and into environments that are already difficult for them to survi
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au
Thanks to mom and dad, baby reef fish may have what it takes to adjust to hotter oceans.
In a rapidly changing climate, the decline of animal populations is a very real concern. Today, an international team of researchers report new evidence of reef fish adjusting to global warming conditions at the genetic level.
For the first time, researchers from the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) and the King Abdullah University of Science & Technology (KAUST), have found that reef fish can inherit from their parents the genetic tools to adjust to ocean warming.
“When parents are exposed to an increase in water temperature, we found that their offspring improved their performance in these otherwise stressful conditions by selectively modifying their epigenome,” said senior author Prof Philip Munday of Coral CoE at James Cook University.
Epigenetic change refers to chemical modifications in the DNA that signals genes to be switched on or off. A range of factors, including disease, famine, or in the case of this research, heat stress, can stimulate these subtle changes.
In this study, when both parent and offspring experienced the same elevated water temperatures, responsive changes in their epigenome, via selective DNA methylation, were observed that enhanced the next generation’s ability to cope with the new, warmer temperatures.
“We reared spiny chromis damselfish, a common Indo-Pacific reef fish, for two generations under three different water temperatures, up to 3 degrees Celsius warmer than current-day ocean temperatures,” explained co-author Prof Timothy Ravasi of KAUST.
“The next generation appeared to be advantaged by parental exposure to elevated temperatures. The offspring’s altered gene expression, also referred to as ‘acclimation,’ allowed them to maximise oxygen consumption and energy use.”
“Acclimation may buffer populations against the impacts of rapid environmental change and provide time for genetic adaptation to catch up over the longer term,” said Prof Munday.
The authors of the study note that while this is good news for reef fish, the decline of their coral habitat, as a result of climate change, will continue to be an overriding concern for their survival.
The paper “The epigenetic landscape of transgenerational acclimation to ocean warming” is published in Nature Climate Change.
Citation: Ryu, T, Veilleux, H, Donelson, JM, Munday, PL, and Ravasi, T (2018). The epigenetic landscape of transgenerational acclimation to ocean warming. Nature Climate Change. DOI: 10.1038/s41558-018-0159-0
Images must carry credits as listed in Dropbox folder.
CONTACTS
Prof Philip Munday
Coral CoE
Phone: +61 (0) 0408 714 794, +61 (0)7 4781 5341 (AEST)
Email: philip.munday@jcu.edu.au
Prof Timothy Ravasi
KAUST
Phone: +61 491 333 697 (AEST)
Email: timothy.ravasi@kaust.edu.sa
FOR MORE INFORMATION
Ms Catherine Naum
Communications Manager
ARC Centre of Excellence for Coral Reef Studies
Phone: +61 (0) 0428 785 895, +61 (0)7 4781 6067 (AEST)
Email: Catherine.Naum1@jcu.edu.au
New research has found as climate change causes the world’s oceans to warm, baby sharks are born smaller, exhausted, undernourished and into environments that are already difficult for them to survi
A new study shows the coastal protection coral reefs currently provide will start eroding by the end of the century, as the world continues to warm and the oceans acidify. A team of researchers led
A team of scientists led by the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) won one of the nation’s top science awards at tonight’s ‘Oscars of Australian science’, the Eureka P
An analytical tool will be used to assess the climate risks facing historic World Heritage sites in Africa—the ruins of two great 13th century ports and the remains of a palace and iron-making indus
Abstract: It is a little over a decade since research commenced into the effects of anthropogenic ocean acidification on marine fishes. In that time, we have learned that projected end-of-century
Abstract: Increased uptake of carbon dioxide from the atmosphere has caused the world’s ocean to become more acidic. Different marine habitats are known to have varying ranges of CO2 across mul
Abstract: The Allen Coral Atlas (http://allencoralatlas.org) partnership uses high-resolution satellite imagery, machine learning, and field data to map and monitor the world’s coral reefs at unp
Abstract: Climate change is causing the average surface temperature of the oceans to rise and increasing the frequency and intensity of marine heatwaves. In addition, absorption of additional CO2
Abstract: Marine environments are a concealing medium, where observations of natural fish behavior are challenging. In particular, the geographic and depth distributions of migratory top predators ar
Abstract: Invasive species management can be the the subject of debate in many countries due to conflicting ecological, ethical, economic, and social reasons, especially when dealing with a species s
Abstract: Ocean acidification, the increase in seawater CO2 with all its associated consequences, is relatively well understood in open oceans. In shelf seas such as the Great Barrier Reef, processe
Abstract: The backdrop of legends and movies, the deep sea has always been unfathomable because we had no idea what existed there. Once thought to be barren of life, we now know this couldn’t be
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au