Reef fish futures foretold
An international group of scientists is predicting markedly different outcomes for different species of coral reef fishes under climate change – and have made substantial progress on picking the ‘
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au
Titanic forces in the Earth’s crust explain why the abundance and richness of corals varies dramatically across the vast expanse of the Indian and Pacific Oceans, a world-first study from the ARC Centre of Excellence for Coral Reef Studies (CoECRS) has found.
This new finding has major implications for corals under climate change: if rich coral communities arise from geological processes that take place over millions of years, they will be even harder to replace if lost due to global warming.
Scientists from CoECRS reveal for the first time that abrupt changes in the mix of coral species are associated with earthquakes, volcanoes, and jostling among the Earth’s giant tectonic plates. The study shows that slow geological processes generate the patterns of reef biodiversity that we see today, and explains why some coral species are more widespread than others.
“There are many theories to explain how coral reefs came to be,” says lead author, Dr Sally Keith of CoECRS and James Cook University. “Traditionally scientists have tested these theories by looking at where species occur. We used a fresh approach that focused on where species stopped occurring and why.”
“Our results were striking”, says Dr Keith. “Unexpectedly, we found that coral species are not limited by sudden changes in the environment or large gaps in habitat – but rather by major geological events such as the clash of two giant tectonic plates.”
The team concludes that the slow movement of the Earth’s crust over millions of years has gradually created the biodiversity pattern we see across the Oceans today.
“For example, Hawaii is a chain of volcanic islands that has formed as a tectonic plate moves over a ‘hotspot’ of molten rock. The rock repeatedly punches through the Earth’s crust as lava, producing volcanoes that jut out above the ocean surface, eventually forming a chain of volcanic islands,” explains Dr Keith.
“Over time, corals spread across the island chain using the islands as ‘stepping stones’, while at the same time they remaining isolated from the rest of the Pacific. As a result, a distinct set of Hawaiian coral reefs arises.”
The team discovered that species’ traits, such as their age or ability to tolerate deeper habitats, have influenced the success of corals in moving from one region to another – probably because older and more versatile species have a greater likelihood of survival when entering new environments.
The discovery has big implications for coral reefs in the face of climate change.
“Climate change is leading to the loss of corals throughout the tropics. This study has shown that the diversity of corals we see today is the result of geological processes that occur over millions, even tens of millions, of years,” says Professor Sean Connolly, a co-author of the study.
“If we lose these coral-rich environments the recovery of this biodiversity will take a very long-time, so our results highlight just how critical it is to conserve the coral reefs that exist today.”
The paper “Faunal breaks and species composition of Indo-Pacific corals: the role of plate tectonics, environment, and habitat distribution” by Sally Keith, Andrew Baird, Terry Hughes, Josh Madin and Sean Connolly appears in the journal Proceedings of the Royal Society B.
More information:
Dr Sally Keith, CoECRS and JCU, +61 (0)449 132 695 or sally.keith@jcu.edu.au
Prof Sean Connolly, CoECRS and JCU, +61 (07) 4781 4242 or sean.connolly@jcu.edu.au
Jenny Lappin, CoECRS, +61 (0)7 4781 4222
Jim O’Brien, James Cook University Media Office, +61 (07) 4781 4822 or 0418 892 449
www.coralcoe.org.au
An international group of scientists is predicting markedly different outcomes for different species of coral reef fishes under climate change – and have made substantial progress on picking the ‘
New research has found as climate change causes the world’s oceans to warm, baby sharks are born smaller, exhausted, undernourished and into environments that are already difficult for them to survi
A new study shows the coastal protection coral reefs currently provide will start eroding by the end of the century, as the world continues to warm and the oceans acidify. A team of researchers led
A team of scientists led by the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) won one of the nation’s top science awards at tonight’s ‘Oscars of Australian science’, the Eureka P
Abstract: It is a little over a decade since research commenced into the effects of anthropogenic ocean acidification on marine fishes. In that time, we have learned that projected end-of-century
Abstract: Increased uptake of carbon dioxide from the atmosphere has caused the world’s ocean to become more acidic. Different marine habitats are known to have varying ranges of CO2 across mul
Abstract: The Allen Coral Atlas (http://allencoralatlas.org) partnership uses high-resolution satellite imagery, machine learning, and field data to map and monitor the world’s coral reefs at unp
Abstract: Climate change is causing the average surface temperature of the oceans to rise and increasing the frequency and intensity of marine heatwaves. In addition, absorption of additional CO2
Abstract: Marine environments are a concealing medium, where observations of natural fish behavior are challenging. In particular, the geographic and depth distributions of migratory top predators ar
Abstract: Invasive species management can be the the subject of debate in many countries due to conflicting ecological, ethical, economic, and social reasons, especially when dealing with a species s
Abstract: Ocean acidification, the increase in seawater CO2 with all its associated consequences, is relatively well understood in open oceans. In shelf seas such as the Great Barrier Reef, processe
Abstract: The backdrop of legends and movies, the deep sea has always been unfathomable because we had no idea what existed there. Once thought to be barren of life, we now know this couldn’t be
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au