At the ARC Centre of Excellence for Coral Reef Studies we acknowledge the Australian Aboriginal and Torres Strait Islander peoples of this nation. We acknowledge the Traditional Owners of the lands and sea where we conduct our business. We pay our respects to ancestors and Elders, past, present and future. The ARC Centre of Excellence for Coral Reef Studies is committed to honouring Australian Aboriginal and Torres Strait Islander peoples’ unique cultural and spiritual relationships to the land, waters and seas and their rich contribution to society.

2 Vision
2 Mission
2 Aims
3 Overview
5 Director’s Report
6 Research Impact and Engagement
8 Recognition of Excellence of Centre Researchers
9 2019 Australian Research Council Fellowships
10 Research Program 1: People and Ecosystems
16 Researcher Profile: Danika Kleiber
17 Article: The Cure to the Tragedy of the Commons? Cooperation
18 Research Program 2: Ecosystem Dynamics, Past, Present and Future
24 Researcher Profile: Yves-Marie Bozec
26 Article: The Great Barrier Reef was seen a 'too big to fail.' A study suggests it isn’t.
28 Research Program 3: Responding to a Changing World
34 Researcher Profile: Ove Hoegh-Guldberg
36 Article: ‘Bright white skeletons’: some Western Australian reefs have the lowest coral cover on record
38 National Priority Case Study: Great Barrier Reef Governance
40 Article: The Great Barrier Reef outlook is ‘very poor’. We have one last chance to save it
42 Graduate and Early Career Training
51 Graduate Profile: Emmanuel Mbaru
52 Article: 'You easily feel helpless and overwhelmed': What it's like being a young person studying the Great Barrier Reef
56 National and International Linkages
62 Communications, Media and Public Outreach
66 Governance
69 Membership
73 Publications
87 2020 Activity Plan
88 Financial Statement
89 Financial Outlook
90 Key Performance Indicators
92 Acknowledgements
Providing scientific knowledge that fosters sustainable use, adaptive governance and effective management of the world’s coral reefs to enhance human well-being.

To lead the global research effort in the provision of scientific knowledge necessary for sustaining the ecosystem goods and services of the world’s coral reefs during a period of unprecedented environmental change.

The ARC Centre of Excellence for Coral Reef Studies commenced operations in 2014 following an award of $28 million from the Australian Research Council to fund the Centre for seven years. Headquartered at James Cook University (JCU), the Centre’s additional nodes are The Australian National University (ANU), The University of Queensland (UQ) and The University of Western Australia (UWA). Our national and international Partner Institutions are the Australian Institute of Marine Science (AIMS), the Center for Ocean Solutions at Stanford University (COS, USA), Centre National de la Recherche Scientifique (CNRS, France), the Great Barrier Reef Marine Park Authority (GBRMPA), the International Union for Conservation of Nature (IUCN, Switzerland) and WorldFish (Malaysia). In 2019, the Centre had collaborative links and co-authorships with 445 institutions in 69 countries.

The major objective of the Centre is to achieve a better understanding of the science, social and natural, that underpins the dynamic changes currently occurring on coral reefs worldwide. The Centre’s research is multifaceted and transdisciplinary. Improving the governance and management of natural systems and enhancing the capacity to sustain human and natural capital is an overarching goal of our research.

AIMS

The aims of the Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies are:

RESEARCH

Produce research that is world-best, innovative, collaborative, multidisciplinary and highly relevant to coral reef management, adaptive governance and policy development.

RESEARCH TRAINING AND PROFESSIONAL EDUCATION

Build human capacity and expertise in coral reef science worldwide.

NATIONAL AND INTERNATIONAL LINKAGES

Create a global hub for integrated coral reef research collaborations.

IMPACTS AND END-USER ENGAGEMENT

Exchange and transfer knowledge, technologies and research outcomes with end-users and partners.

GOVERNANCE

Continuously evolve Centre management to ensure it is effective, co-operative, multi-institutional and communicative.
Welcome to the 2019 annual report of the Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies.

In 2019, the Centre's membership comprised 69 Chief Investigators, Research Fellows and Associates; 30 Partner Investigators, resident international scholars and adjunct researchers; and 170 research students (p69). Nine of the Centre's researchers this year were ARC Fellows (Australian Laureate, Future and DECRA) and one was an Advance Queensland Fellow. We welcomed ten new Research Fellows and Associates in 2019, and 26 new graduate students from 14 countries.

At the time of writing, in early March 2020, we are responding to a new severe incident of coral bleaching on the Great Barrier Reef, for the third time in the past 5 years. The ARC Centre will once more be undertaking rigorous aerial and underwater surveys to monitor the impact and address a range of research questions. Two of our 2019 journal articles on coral bleaching, published in *Nature* and *Nature Climate Change*, were listed in the Altmetric Top 100 as articles that 'most captured the public's imagination' during the year (p73).

In 2019, Centre researchers provided 108 briefings across both the public and private sectors (p62). Our research findings continued to guide the agencies and governments responsible for reef management, and the industries that depend on coral reefs. For example, in an article published in *Nature* (p38), researchers from the ARC Centre recommended a new, holistic approach to safeguarding coral reefs – by focusing on the formal and informal governance of land as well as the ocean. Also in 2019, Centre researchers implemented the Climate Vulnerability Index (CVI) to rapidly assess climate change risk to World Heritage sites in Australia, Azerbaijan, France, the United Kingdom, and elsewhere.

The Centre's three research Program summaries on pp10-37 provide an overview of our activities throughout 2019. In addition to our partnership with the Australian Institute of Marine Science and the Great Barrier Reef Marine Park Authority, the ARC Centre has formal international partnership agreements with the Center for Ocean Solutions at Stanford University, France’s Centre National de la Recherche Scientifique (CNRS), and WorldFish in Malaysia. Our co-authors in 2019 came from 445 institutions in 69 countries, reflecting the Centre's continuously expanding international network of collaborators (p56).

In 2019, the Centre's research outputs were published in a total of 187 journal titles that span many fields of research, reflecting the multidisciplinary breadth of our activities. We produced 411 publications this year, including 363 peer-reviewed journal articles. Since 2014, our publications have increased by >30%, now exceeding one each day. Thirty-nine articles appeared this year in prestige journals such as *Nature*, *Science* and *PNAS*. ARC Centre researchers published 313 journal articles with cross-institutional co-authorship (p73).

I’d like to express my sincere gratitude to our many friends around the world for their contributions to an outstanding year, and to the Centre's Advisory Board, our research partners and end-users from many institutions in Australia and overseas. I am especially grateful to Brian Walker and Mandy Thomas for their long-standing, wise council on our Advisory Board (p66).

Finally, in 2020 we all face the uncertainty caused by the COVID-19 pandemic. ARC Centre researchers are already working from home, and we are responding quickly to manage the disruptions, care for each other, and remain as productive as possible over coming months.

Thank you very much for your support.

Terry Hughes
Director
ASSEssing climate impacts

Gary Russ and colleagues hosted a workshop to apply their Climate Vulnerability Index, to the Heart of the Reef UNESCO World Heritage Area (Great Barrier Reef Marine Park). The workshop provided capacity building and knowledge exchange for complex and interdisciplinary coral reef research. The information was shared at the Third Meeting of the Conference of the Parties of the Convention on Biological Diversity, held under the auspices of the United Nations Environment Programme, in Cancún, Mexico. The workshop was attended by representatives of relevant governments, international organisations, and civil society organisations.

INFORMING GENDER INTEGRATION

Danae Kalmbach (French Polynesia) and the Centre, co-led a three-day gender training workshop for researchers from the Solomon Islands, Vanuatu, Kiribati and Tonga, training them on gender integration, gender roles, and gender statistics. The workshop was the first of a series of gender training workshops designed to help researchers integrate gender into their research projects.

PLANNING MARINE PROTECTED AREAS

Dr. Peter Mumby and his team provided guidance on planning marine protected areas for the Great Barrier Reef, the Coral Triangle, and other regions. The guidance included strategies for identifying and designating marine protected areas, and for evaluating their effectiveness.

INFORMING CLIMATE CHANGE AND CORAL BLEaching

Terry Hughes delivered a keynote address at the Coral Reef Research at the Scripps Institution of Oceanography, UCD, UCSC, UCSD, and the Marine Science Institute, University of California, the California Institute of Technology, and the University of Miami and the National Science Foundation.

BUILDING CAPACITY IN GENDER EDUCATION

Danae Kalmbach’s 2018 Coral Reef Futures Symposium talk was used by Danae Kalmbach, Academia/Anthropology of Medicine, Technology, in her Science and Kinesiotherapy at New York University and Paris South-East Area.

COMMONWEALTH’S OUTLOOK REPORT

Terry Hughes was appointed to review the Great Barrier Reef Marine Park Authority’s 2019 Outlook Report. Published every four years, the Outlook Report is a comprehensive assessment of the Great Barrier Reef’s health, pressures, and likely future and is central to the development of a future Reef Plan.

LEADING REEF PLANNING AND MANAGEMENT

Coral reef scientists and Terry Hughes are members of the Reef 2050 Plan’s scientific reference group, providing scientific and expert advice related to the Great Barrier Reef. This includes advice for the implementation and review of the Reef 2050 Plan, the Reef 2050 Quality Improvement Plan. The Panel also advises the Australian Government Minister for the Environment and Energy on funding priorities for the Reef Trust.

INFORMING THE REEF 2050 PLAN

Robert Mason, Yves-Marie Bozec (p24), Karl Hock and Terry Mumby, analysed benefits of local management interventions under climate change for the Queensland Government’s Office of the Great Barrier Reef. The analysis was motivated by the need to better understand the impacts of reef interventions to inform the revision of the Reef 2050 Plan.

NETWORKING GBR RESEARCH AND MANAGEMENT

David Beschin (GBRMPA) and Ana C. Grech led 40 managers, researchers and community-based fisheries training aimed at strengthening community-based management and policy development in small-scale fisheries.

INFLUENCING POLICY DEVELOPMENT

Susan Warren provided briefings on ocean acidification to policy makers in the Australian Government. Terry Hughes briefed parliamentarians on the potential for ocean acidification to impact the Great Barrier Reef.

REDUCING MARINE TURTLE AND CERATITID BYCATCH

Scientists from CSIRO and the ARC Centre worked with global marine conservation organisations, such as the World Wildlife Fund, to develop strategies to reduce the bycatch of turtles and other marine species.

PLANNING NATIONAL PARK ZONING

Michael Barnes is a contributing member of the scientific reference group for the Great Sandy Marine Park. The group provides scientific advice to the Queensland Government and the Queensland Department of Environment and Science for the management of the Great Sandy National Park.

DESIGNING MARINE RESERVE NETWORK

Jorge Alvarez-Romero, in collaboration with the Mexican coral reef organisation COBI, developed technical briefings about the proposed marine reserves for the Mesoamerican Reef region. The advice was provided to people and organisations working in the region, including government agencies, conservation NGOs to support their decision-making.

BUILDING CAPACITY

Ryan Lowe leads ongoing strong research partnerships with Indian Ocean island governments especially Mauritius, supported by the Mauritius government and Australia’s Department of Foreign Affairs and Trade. In 2019, these partnerships delivered international professional short courses on the management of coral reef coastlines attended by government officials, coastal engineers, academics and NGOs.

Supporting indigenous wellbeing

Jorge Alvarez-Romero, in collaboration with the Mexican coral reef organisation COBI, developed technical briefings about the proposed marine reserves for the Mesoamerican Reef region. The advice was provided to people and organisations working in the region, including government agencies, conservation NGOs to support their decision-making.

IMPROVING WATER QUALITY

The team worked to develop new monitoring and management strategies to improve water quality in the Great Barrier Reef.

MONITORING AND MARINE RESERVE PERFORMANCE

Gary Russ and PhD students, Evy McClure and John Pemberton, delivered GBRMPA to undertake marine reserve performance monitoring across the Great Barrier Reef, including the implementation and review of the Marine Reserve Network.

CONTROLLING CROWN-OF-THORNS STARFISH

Peter Mumby, George Roff, Karl Hock and Terrance Mumby, led a strategic review of crown-of-thorns starfish control.

MANAGING FISHERIES

The team worked with colleagues from the Queensland Department of Agriculture and Fisheries (Northern Fisheries Centre) to improve assessments of harried fisheries.

REACHING OUT TO THE PUBLIC

Sam van Dorn and her colleagues’ research into biodiversity and global climate change was showcased as part of the “Reef to Reef” exhibition at the Queensland Museum of Tropical Queensland from April to November 2019.
RECOGNITION OF EXCELLENCE OF CENTRE RESEARCHERS

Highlights of 43 awards received by ARC Centre of Excellence researchers in 2019

Six ARC Centre researchers, Ove Hoegh-Guldberg, Terry Hughes, Geoffrey Jones, Philip Munday, John Pandolfi and Morgan Pratchett, were identified as 2019 Highly Cited Researchers by Clarivate Analytics, each ranking in the top 1% of researchers worldwide for their citations. Their research has demonstrated a significant impact through publication of multiple highly-cited papers during the past decade.

Terry Hughes was conferred an honorary Doctor in Science (Honoris causa) from Trinity College, The University of Dublin, Ireland. Hughes also led the National Coral Bleaching Taskforce which was shortlisted for the Australian Museum’s Environment, Energy and Science Eureka prize. The Taskforce’s Nature paper ‘Global warming impairs stock-recruitment dynamics of corals’ was listed on Carbon Brief’s Top 10 climate papers most featured in the media in 2019. This paper and their Nature Climate Change paper ‘Ecological memory modifies the cumulative impact of recurrent climate extremes’, were listed in the 2019 Altmetric Top 100 as articles that ‘most captured the public’s imagination’ in 2019, securing 14th and 22nd positions.

David Bellwood was awarded an ARC Australian Laureate Fellowship (p9). David was also named as James Cook University’s Primary-Advisor of the Year, for excellence in supervision of research degree candidates.

Jodie Rummer was named as the 2019 Queensland Young Tall Poppy Scientist of the Year. Andrew Hoey also received a Young Tall Poppy Award. These prestigious awards recognise up-and-coming scientists who combine world-class research with a passionate commitment to science communication.

Joshua Cinner and Ove Hoegh-Guldberg (p34) were listed on The Australian newspaper’s Top 40 Stars of Research Lifetime Achievement Leaderboard in the categories of ‘Biodiversity and Conservation Biology’ and ‘Marine Sciences and Fisheries’, respectively.

Ove Hoegh-Guldberg was named on Apollitical’s list of ‘The world’s 100 most influential people in climate policy’. Ove was also appointed as judge for the 2019 Queensland Premiers Award for Excellence to Protect the Great Barrier Reef.

Sue-Ann Watson won the inaugural Australian Marine Sciences Association North Queensland Communication Award for contribution to science communication, and was the runner-up in the International Society for Experimental Biology 2020 President’s Medal for Animal Biology. She also won a Women in Leadership Australia Scholarship for the mid-career leadership Executive Ready Programme 2019-2020.

Rene Abesamis was a recipient of a 2019 Australian Alumni Excellence Award for his contributions to Philippine and global marine science. Australian Embassy awards celebrate the exceptional achievements of Australian-educated Filipinos.

Graeme Cumming was appointed joint head of the Faculty of the FIU00 Ecosystem Ecology section. He was also appointed to the Scientific Advisory Panel of the Geneva Global Institute, and accepted an invitation to be a member of the Scientific Committee of Programme on Ecosystem Change and Society (PECS). PECS is part of future Earth, a global sustainability research platform.

Alana Grech was awarded the 2019 James Cook University’s Award for Excellence in Graduate Research Leadership.

Danika Klieber (p16) received a merit award from the Asian Fisheries Society, for organising the Gender Aquaculture and Fisheries Society meeting in 2019.

David Miller was awarded a Bridge Fellowship by the Japan Society for the Promotion of Science, to undertake research with colleagues at the Okinawa Institute of Science and Technology, Japan.

Centre students also received wide recognition in 2019 (p44).

The Centre’s commitment to world-best science is constantly reflected in the calibre of its researchers. In 2019, three of the Centre’s most outstanding researchers were awarded prestigious ARC Fellowships: Professor David Bellwood was awarded an Australian Laureate Fellowship, Dr Jennifer Donelson a Future Fellowship, and Dr Michele Barnes received a Discovery Early Career Researcher Award (DECRA).

ARC Fellowships are highly competitive. We congratulate our newly minted Fellows, noting the range of career stages and research focuses they represent.

Professor David Bellwood FAA
ARC Australian Laureate Fellow

Only the highest-quality researchers of international repute are considered for Australian Laureate Fellowships, which support up to 17 five-year Fellowships awarded each year. The Fellows are chosen for their leadership of significant, ground-breaking research projects in Australia.

David’s work focuses on identifying the key ecosystem functions needed to support coral reefs. He looks at threats to these reefs alongside the crucial ecosystem functions that support not only the reefs, but the people dependent on them.

David says coral reefs across the globe are changing fast. This pace challenges the traditional scientific management and governance approaches to coral reefs.

His project will address these challenges by implementing a new, functional approach to coral reefs that exploits a unique combination of evolutionary and ecological methodologies.

The project will provide a global overview of ecosystem function and an in-depth understanding of how ecosystems change over time, leading to specific, and practical, management objectives.

Dr Jennifer Donelson
ARC Future Fellow

Future Fellows are recognised as excellent mid-career researchers undertaking high quality research in areas of national and international benefit.

Jenni’s work investigates the effects of environmental change on coral reef fish. In particular, she examines fish that are able to adjust to warming waters by passing on heat-tolerant genes to their offspring.

Her research will generate new knowledge on the interplay between adaption and plasticity, both from within and across generations, using novel experimental designs. Exposing fish to higher water temperatures appears to switch genes on, or off. This alteration in gene expression is transferred to the offspring, and this ‘acclimation’ acts as a buffer against increasingly warming waters.

The improved knowledge of fish acclimation and adaptation to environmental change developed by this project will inform the management of cumulative impacts on reef fish and fisheries. Jenni’s research will provide significant benefits to all communities that rely on fish for nutrition, for their local economy and for the social values of well-managed reef fisheries.

Dr Michele Barnes
ARC DECRA Fellow

The Discovery Early Career Researcher Award (DECRA) is a prestigious three-year fellowship for early career researchers. It is highly competitive, with only one in seven applicants being successful.

Michele examines how social networks and the distribution and sharing of power can affect adaptive action in response to climate change. Her project is the first longitudinal study that tracks individuals – as well as government institutions – before and after a global coral bleaching event. This approach will explicitly examine key factors that facilitate, or inhibit, adaptive action at multiple scales.

Michele aims to significantly improve the understanding of how the adaptive capacity of individuals and sectors of society can translate into action. Her research will explicitly examine the role of social networks and power in shaping these responses.

Her project will contribute practical guidance on how to build the adaptive capacity of both individuals and of key governance institutions.

2019 AUSTRALIAN RESEARCH COUNCIL FELLOWSHIPS
Professor Terry Hughes FAA
Professor Terry Hughes is the Director of the ARC Centre and co-leader of Research Program 1. He received his PhD in 1984 from Johns Hopkins University and was a National Science Foundation Postdoctoral Fellow at the University of California, Santa Barbara, before moving to James Cook University in 1990. Terry has broad research interests in ecology, marine biology and the social-ecological dynamics of coral reefs. As Centre Director, he provides academic leadership and is responsible for the strategic development of the Centre. Terry was elected a Fellow of the Australian Academy of Science in 2001 in recognition of ‘a career which has significantly advanced the world’s store of scientific knowledge’. From 2008-2010, he was a member of the ARC Advisory Council. Terry has been awarded three Federation/Australian Laureate Fellowships by the ARC, from 2002-2017. He has received many additional prizes, including the prestigious quadrennial Darwin Medal of the International Society for Reef Studies (2008), an Einstein Professorship from the Chinese Academy of Science (2015), the Sir John Maddox Prize (2018), and the Climate Change Award from the Prince Albert II of Monaco Foundation (2018). In December 2019, he received an honorary doctorate from Trinity College, Dublin. Terry is a Clarivate Highly Cited Researcher.

Professor Tiffany Morrison
Professor Tiffany Morrison is a political geographer and co-leader of Research Program 1. Tiffany’s research combines human geography, political science and ecology to tackle increasing complexity in environmental governance. Tiffany received her PhD in 2004 from The University of Queensland, supported by a visiting fellowship at the University of Wisconsin-Madison, USA. From 2004-2008 she taught in the Master of Public Administration program in the School of Political and International Studies at Flinders University. During that time, she was awarded a visiting Fellowship at the University of Kyoto Disaster Prevention Institute, Japan. In 2008, Tiffany joined the School of Geography, Planning and Environmental Management at The University of Queensland where she co-led an interdisciplinary team of ecologists, geographers, planners, economists and lawyers working on an ARC Super Science funded program of research on sea level rise. Since joining the ARC Centre in 2015, she has developed and led a major new research program on the governance of climate adaptation and on conflict in large-scale reef systems. Tiffany serves on the Editorial Board of Earth System Governance. Her recent studies of the complex governance of tropical ecosystems have been published in Nature, PNAS, Nature Climate Change and Global Environmental Change.

Professor Bob Pressey FAA
Professor Bob Pressey is a co-leader of Research Program 1. Bob’s research includes studies of biodiversity, geographic information systems, spatial modelling of species and human activities, software development, explicit frameworks for deciding on the location and timing of conservation investments, and on the socio-economic aspects of implementing conservation. Prior to moving to James Cook University and the ARC Centre, he was a research scientist for the New South Wales National Parks and Wildlife Service for almost 20 years. During that time, Bob developed and applied leading-edge techniques in conservation planning, influencing policy and conservation practice. He has served on the editorial boards of leading conservation biology journals. Bob was awarded The Royal Botanic Gardens’ Eureka Prize for Biodiversity Research in 2002 and the inaugural Australian Ecology Research Award from the Ecological Society of Australia in 2008. In 2010, he was elected a Fellow of the Australian Academy of Science for his contributions to the field of systematic conservation planning. His understanding of conservation applications was recognised in 2012 by his appointment to WWF Australia’s Eminent Scientists Group.

RESEARCHERS
Jorge Álvarez-Romero, Michele Barnes, David Bellwood, Brock Bergseth, Jon Brodie, Iain Caldwell, Joshua Cinner, Pip Cohen, Graeme Cumming, Alana Grech, Georgina Gurney, Danika Kleiber, Jacqueline Lau, Laurence McCook, David Mills, John Pandolfi, Cristian Rojas, Garry Russ and Andrew Song.

ANNUAL REPORT 2019
Research in Program 1 focuses on understanding the linkages between coral reef ecosystems, the goods and services they provide to people, and the governance of those systems. The overarching objective is to improve the stewardship of coral reefs and the wellbeing of reef-dependent populations worldwide, while simultaneously providing lessons and insights for other ecosystems. Key research questions include how economic development, social networks, local history and political drivers influence resource use and governance. Program 1 places a high value on engagement with communities, managers and policy makers, government agencies, and with non-government organisations. The conservation planning group, led by Bob Pressey, has the broad goal of providing decision-makers with more effective means of managing species and ecosystems by providing decision-support tools, guidelines for using information, and rigorous assessments of the adequacy of existing conservation measures.

In 2019, the geographic, social and ecological scope of Program 1’s research was very diverse, with major projects in Australia, Brazil, the Cook Islands, Costa Rica, Fiji, Indonesia, Kenya, Micronesia, Mexico, Papua New Guinea, the Philippines, the Solomon Islands, Tonga, and the USA. Program 1 continues to develop a productive relationship with researchers at WorldFish (p58), headquartered in Malaysia. In 2019, Pip Cohen from WorldFish led a major paper in Frontiers in Marine Science on securing a just space for small-scale fisheries in the blue economy, with Centre co-authors Joshua Cinner, Terry Hughes and PhD student Emmanuel Mbaru (p51). Small-scale fisheries expert and recent Centre PhD graduate Jacqueline Lau joined the Centre as the fourth post-doctoral fellow recruited to build our ongoing WorldFish collaboration. Iain Caldwell and Brock Bergseth also moved to the Centre in 2019. Iain joins us with a PhD from the University of British Columbia, Canada, following a postdoctoral fellowship at the University of California, Santa Barbara and Stanford University. Brock has moved to the Centre’s Townsville node as a new postdoctoral fellow, following research appointments with CSIRO in Tasmania and the Minderoo Foundation in Western Australia.

Graeme Cumming led a special feature in Biological Conservation with Centre co-editors Morgan Pratchett and Georgina Gurney. The special feature was an outcome of a workshop held on Magnetic Island in 2018 on future directions for coral reef studies with over 20 Centre researchers. A key paper in the special feature analyses spatial mismatches and functional prioritisation, led by David Bellwood, with over a dozen Centre co-authors. Another major paper by Graeme Cumming and colleagues from the Great Barrier Reef Marine Park Authority, addresses spatial heterogeneity and scale in managing large marine protected areas. Tiffany Morrison led a multi-disciplinary paper on navigating the politics of polycentric environmental governance, drawing together cases from the Great Barrier Reef, the Reducing Emissions from Deforestation and Degradation scheme (REDD+) and the European Water Framework Directive. The paper, in Global Environmental Change, was co-authored with Terry Hughes and Andrew Song from the Centre, and with colleagues from the UK, the USA, the Netherlands, Malaysia and Australia. Tiffany also led a high-profile Commentary in Nature’s Special Issue on Climate Change, designed to coincide with the 2019 UN Climate Summit in New York. The paper, entitled ‘Save reefs to rescue all ecosystems’, sets out the reef climate challenge and proposes several land-based, philanthropic and activist solutions from across the tropics.

Joshua Cinner was lead author of a paper in PNAS analysing 16 years of social and ecological data, co-authored with four Centre researchers and colleagues from Singapore, the UK, France, and Papua New Guinea. The paper outlines challenges and opportunities for adaptive management of the commons. Joshua and Michele Barnes also published a conceptual paper on the social dimensions of resilience in social-ecological systems, in One Earth.

Michele was also lead author on a 2019 paper in Nature Communications on social-ecological alignment and ecological conditions in coral reefs.

Program 1 researchers led over a dozen workshops and mentoring activities during the year. For example, Graeme Cumming led two workshops in Annapolis, USA as part of a National Socio-Environmental Synthesis Center (SESYNC) project on quantitative synthesis and modelling of social-ecological dynamics. Other participants included Tiffany Morrison, Georgina Gurney and colleagues from the US, Germany, Sweden, South Africa, UK and Spain. Georgina Gurney co-led a workshop with Emily Darling (Wildlife Conservation Society), funded by the National Center for Ecological Analysis and Synthesis (USA) with meetings during 2019 in Santa Barbara and Rome, co-hosted by the UN Food and Agricultural Organization (FAO). This research group will provide the IUCN, member nations of The Pacific Community (SPC), the FAO, and a consortium of international NGOs, with a decision-support tool to make informed choices about the implementation of marine protected areas and other conservation measures.

Program 1 researchers had a busy year engaging with many end-users around the world. Tiffany Morrison represented the Centre at the WorldFish annual scientific management committee meeting at WorldFish headquarters in Penang, Malaysia. Joshua Cinner gave a series of public and university-wide seminars in his role as ‘distinguished international visiting scholar’ at the University of Rhode Island, USA. Terry Hughes delivered 19 lectures and public talks in the USA, including a briefing to the National Science Foundation, in Washington. Terry was also appointed as a reviewer of the 2019 Great Barrier Reef Outlook Report, delivered by the Commonwealth to UNESCO in December.

Program 1 members also received numerous accolades in 2019. Joshua Cinner was part of a team awarded US$2.6m to study reef futures. A raft of Centre researchers were shortlisted for the Australian Eureka Award. Two PhD students won best paper awards at the Global Conference on Gender in Aquaculture and Fisheries in Bangkok (Sarah Lawless) and at the MARE People and the Sea conference in Amsterdam (Jacqueline Lau). In December, Centre Director, Terry Hughes, received an honorary doctorate from Trinity College, Dublin, Ireland.
Call for co-operation as ‘blue boats’ rob Pacific reefs

A flotilla of Vietnamese fishing boats with crews suffering in harsh conditions is stripping Pacific coral reefs of seafood, as poaching escalates to become an international human rights and security issue.

Dr Andrew Song, joint ARC Centre of Excellence for Coral Reef Studies and WorldFish research fellow, has produced the first analysis of international attempts to manage Vietnam’s blue boat fleet – small fishing vessels, commonly painted blue, that travel thousands of kilometres to fish illegally in Pacific waters.

Dr Song said the reasons are allegedly economic, but also geopolitical, as the intensified Chinese presence/interference has squeezed them out of their waters.

“The boats are between 10–15 metres in length and carry up to 17 people. The crews reportedly have no contract of employment and no insurance and are frequently abandoned after accidents or arrests. They travel more than 7000km around the Pacific and stay up to three months at sea,” Dr Song said.

He said their main targets are high-value species of sea cucumber and giant clam found on many Pacific Island coral reefs.

Dr Song estimates the cost of the boats to be around AU$15,000–$35,000 each, while processed tropical sea cucumber species can retail at AU$150–$300 per kilogram in Hong Kong and Chinese markets. He said there is suspicion that the blue boats were meeting large ‘mother-ships’ in the open ocean to offload their catch and take on supplies. This is yet to be confirmed.

“The collection of sea cucumber in foreign waters is apparently easier and less dangerous, since sea cucumber is still found six to seven metres deep on Pacific island reefs, whereas people have to dive 60 metres, even 80 metres in waters near Vietnam,” Dr Song said.

“The poaching also directly endangers the livelihood security of coastal communities and the national export revenue in the Pacific. Sea cucumber fisheries are considered to be the second-most valuable export fishery for Pacific Island countries,” he said.

Dr Song said Pacific Island countries face limitations in securing the resources to patrol such a vast area, to find, even with radar, and harder to trace administratively than a large ship. He said the problem is intensifying.

“In Australian waters, the latest reported figures show the number of foreign fishing boats caught operating illegally has increased from six in 2014 up to 20 in 2016 with most originating from Vietnam and Indonesia,” he said.

Dr Song said the poachers can be seen as a new kind of security threat—endangering the lives of Vietnamese fishers, endangering food security for Pacific Island nations, and putting Pacific Island economies, coastal communities and the workers on the boats at risk.

“By their dispersed and random nature, blue boats are bolstering the need for closer cooperation not only among governments and agencies, but also among coastal communities and individual fishers.”

Micronutrients ‘slipping through the hands’ of malnourished people

Millions of people across the globe are suffering from malnutrition, despite some of the most nutritious fish species in the world being caught near their homes, according to new research published in Nature today.

Scientists from the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) are part of an international team that found children in many tropical coastal areas could see significant health improvements if just a fraction of the fish caught nearby was diverted into their diets.

Co-author Dr David Mills, based at Coral CoE, is a senior scientist with WorldFish. He says communities who fish for high-value species in the tropics are at risk of micronutrient deficiencies around the world, particularly in Africa, Asia, the Pacific and the Caribbean.

“By their dispersed and random nature, blue boats are bolstering the need for closer cooperation not only among governments and agencies, but also among coastal communities and individual fishers.”

RESEARCHER PROFILE: DANIKA KLEIBER

Dainika Kleiber likes to describe herself as a feminist fisheries researcher. While many people interpret this as the practice of studying female fish, Dainika is more interested in humans, and in particular, the intersection of gender and small-scale fisheries. She is a joint ARC Centre and WorldFish Research Fellow in the People and Ecosystems Research Program (Program 1), based at James Cook University.

Dainika’s uncommon research niche is the result of a lifelong interest in behavioural ecology and gender equity, coupled with a stubborn insistence on doing both. This is reflected in her undergraduate and graduate studies. Dainika began with an undergraduate double major in biology and women’s studies from Tufts University, USA (2002), after which she went on to chase western bluebirds (Sialia mexicana) as a field assistant at UC Berkley in California, then song sparrows (Melospiza melodia) for her Master’s thesis at the University of British Columbia, Canada. During her Masters, Dainika took a course on the human dimension of conservation and resource management, and found her research home. She undertook a PhD at the University of British Columbia, where her doctoral research thesis, ‘Gender and fisheries in the Central Philippines’ focused on the intricacies of collecting sex-disaggregated data in small-scale fisheries contexts, and on women’s and men’s perceptions of, and participation in, community-based marine management.

Following her PhD, Dainika went on to do postdoctoral research with the Too Big To Ignore project, based at Memorial University in Newfoundland, where she focused on transdisciplinary approaches to small-scale fisheries management. She also collaborated with several other gender and fisheries scholars and practitioners to analyse the implications of gender aspects of the Small-Scale Fisheries Guidelines. The Guidelines were designed to influence small-scale fisheries policy and were the first international fisheries policies to explicitly include gender equity and equality as a guiding principle for sustainable fisheries management. Shifting her focus back to the Pacific, Dainika moved to Honolulu, where she worked for NOAA as a social scientist, exploring the cultural dimension of fisheries.

In 2018, Dainika started her Research Fellowship with the ARC Centre of Excellence and WorldFish, headquartered in Penang, Malaysia. The project, which melds perfectly with her research interest and skill set, is focused on designing and implementing social science research on gender equity and fisheries in the Pacific Islands. It provides capacity building for gender integration to fisheries officers and development workers in the Solomon Islands, Vanuatu, Kiribati and East Timor. Dainika also co-leads the Illuminating Hidden Harvest gender theme, which aims to give global estimates for the impact and importance of small-scale fisheries. This is a notoriously tricky prospect, because small-scale fisheries are frequently described as ‘data-poor’, and the available data are rarely sex disaggregated. When faced with a glaring lack of sex-disaggregated fisheries data, Dainika helped to coordinate a team of over 35 gender and fisheries researchers and practitioners from around the world. Together they will ensure that women’s contributions are included in the global story of small-scale fisheries.

When faced with a glaring lack of sex-disaggregated fisheries data, Danika helped to coordinate a team of over 35 gender and fisheries researchers and practitioners from around the world. Together they will ensure that women’s contributions are included in the global story of small-scale fisheries.

The Cure to the Tragedy of the Commons?
Cooperation

Groups whose members cooperate almost always outperform those that don’t. New research shows that these benefits can extend beyond the group to the environment around it. Specifically, the research demonstrates that cooperation among Kenyan fishing communities leads to larger fish stocks and healthier reefs.

A team led by Michele Barnes, a social scientist at James Cook University in Australia, interviewed almost 650 fishers across five coral reef fishing communities to document how they cooperated and established rules. They also looked at the gear the fishers used, the species they caught, and evaluated local reef conditions.

“Kenya is very dependent on reef fishing,” says Barnes. “And, like many places across the globe, they’re facing serious issues about the state of their reefs.”

The researchers found significantly more fish and higher biodiversity in the hunting grounds near three of the five communities. These were sites where competing fishers communicated more openly about where and how they fish. These fishers also tended to discuss their operating rules and worked to resolve conflicts. “They had less variation in their vision of the resource and had developed stronger commitments toward managing it,” says Barnes. The team was careful to rule out other environmental and social factors that might have accounted for the differences seen on the reefs.

“When people are engaged both with each other and with a common resource, they tend to form cooperative relationships,” says Barnes. Not all community engagement is the same, however. The study found that only cooperation among fishermen who are competing for the same species results in higher reef biomass.

The study results may offer a helpful guide for conservationists. “It gives us a pretty strong road map,” says Jack Kittinger, a researcher with the nonprofit Conservation International’s Center for Oceans and a study coauthor. “The hardest thing in conservation is getting a bunch of disparate people to cooperate to ensure the perpetuation of a resource that they all depend on. When that happens, lo and behold, you’ve got better ecological success,” he says.

Malin Pinsky, an ecologist at Rutgers University in New Jersey who was not involved in the study, thinks that this research approach can be scaled to larger and more complex networks involving people and the environment. “It plays out in communities in Kenya,” says Pinsky, “and it plays out between countries on a global stage.” It may also become more relevant as the effects of climate change become starker for coastal communities. “Cooperation is getting much more difficult now that species are on the move, especially as they cross political boundaries,” he adds.

RESEARCH PROGRAM 2: ECOSYSTEM DYNAMICS, PAST, PRESENT AND FUTURE

Professor Sean Connolly
Professor Sean Connolly, from James Cook University, is co-leader of Research Program 2. Sean combines mathematical and statistical modelling with fieldwork and laboratory experiments to study the dynamics of biological turnover at all scales. He received his doctorate in 1999 from Stanford University in California, USA, for research on the ecology of rocky shores. In 1999-2000, Sean was a Research Fellow at the University of Arizona, USA, where he examined global dynamics of marine biodiversity in the fossil record. In 2000, he was recruited to JCU to develop and lead a research program in ecological modelling applied to coral reefs. Sean has more than 100 publications in leading international journals, including 12 publications in Science or Nature, and has supervised 42 postgraduate and Honours students. In 2008, he was awarded an ARC Australian Professorial Fellowship (2008-2012), and in 2009, the Fenner Medal of the Australian Academy of Science, which honours outstanding research in the biological sciences by a scientist under 40. Sean has twice received a national Citation for Outstanding Contributions to Student Learning, in 2006 and 2014, for his innovative and highly effective approaches to teaching ecological modelling to undergraduate students. Sean moved to Panama at the end of 2019, to take up a new position at the Smithsonian Tropical Research Institute.

Dr Alana Grech
Dr Alana Grech, from James Cook University, is co-leader of Research Program 2 and Assistant Director of the ARC Centre of Excellence for Coral Reef Studies. She is an expert in conservation biogeography of coastal ecosystems, cumulative impact assessment (CIA), and environmental decision-making. Alana was previously employed as a Senior Lecturer in Spatial Information Science at Macquarie University, and as a Postdoctoral Research Fellow at the ARC Centre, James Cook University. She has authored more than 70 publications in leading international journals, including Science, Global Change Biology, Conservation Letters and Frontiers in Ecology and the Environment, and is Associate Editor of the journal Diversity and Distributions. Her research on coastal ecosystems of the Great Barrier Reef and Torres Strait has been instrumental to a range of Australian government policy and reports, with Alana regularly invited to provide technical and policy advice. In 2018, Alana received the Queensland Young Tall Poppy Scientist of the Year Award for her leadership in science and communication. Her contributions to research education at James Cook University were recognised in 2019 with an Award for Excellence in Graduate Research Leadership.

Professor John Pandolfi
Professor John Pandolfi, from the School of Biological Sciences and Centre for Marine Science, at The University of Queensland, is co-leader of Research Program 2. John is the world’s leading expert on coral reef palaeoecology. He has broad research interests in marine palaeoecology, with an emphasis on the effects of anthropogenic impacts and climate change on the recent history of modern coral reefs. His research on coral reef ecosystems asks fundamental ecological questions that are best answered by acquiring and using long term data. John has published more than 190 papers, including 24 contributions to the journals Nature and Science. He has served as President of the Australian Coral Reef Society, Co-Chief Editor of Paleobiology, and is Associate Editor for Proceedings of the Royal Society B and Global Ecology and Biogeography. He has supervised 22 PhD students. John has provided frequent briefings on coral reef management and policy (e.g. to the US Congress and Australian Senate) and has been invited to serve on numerous international working groups. In 2001, John received the Discovery Magazine Science Story of the Year Award. In 2013, he was awarded a prestigious Discovery Outstanding Researcher Award from the ARC (2013-2016). He was recently elected as a Fellow of both the International Coral Reef Society (2015) and The Paleontological Society (2016).

RESEARCHERS
Kristen Anderson, Andrew Baird, David Bellwood, Yves-Marie Bozec, Tom Bridge, Jon Brodie, Jamie Caldwell, Severine Choukroun, Peter Cowman, Kay Critchell, Tom DeCarlo, Graeme Cumming, April Hall, Vanessa Haller, Hogst Harrison, Karo Hoek, Andrew Hoey, Terry Hughes, Geoff Jones, Sun Kim, Michael Kingsford, Nils Krück, Ryan Lowe, Robert Mason, Laurence McCook, Mark McCormick, Michael McWilliams, Vanessa Messmer, Peter Mumby, Philip Munday, Stephen Palumbi, Serge Planes, Morgan Pratchett, George Roff, Garry Russ, Eugenia Sampayo, Tim Staples, Greg Torda, Sue-Ann Watson, Sharon Wismmer and Kennedy Wolfe.
PROGRAM 2 REPORT

Research in Program 2 aims to understand the multi-scale dynamics of coral reefs, through the innovative integration of ecology, evolution, genetics, oceanography and palaeontology. Program 2 researchers focus primarily on four key research areas. Firstly, they examine the historical transition from pristine ecosystems to the linked social-ecological systems of today, improving knowledge of how the resilience of coral reefs evolves and responds to human impacts. Secondly, they aim to increase understanding of the dynamics and resilience of ecosystems over multiple spatial and temporal scales and in response to environmental change, and to use those findings to inform and improve the management of coral reefs. Thirdly, Program 2 examines how populations of organisms living on different reefs are connected to each other through the dispersal of their offspring, promoting understanding of how reefs can recover from disturbances, such as bleaching events. Finally, they study the level of functional diversity and redundancy in coral reef assemblages, modelling and assessing the effects of changes in biodiversity on ecosystem function at regional to global scales, as well as investigating the effects of management on the dynamics of reef ecosystems.

The ongoing effects of the devastating 2015–17 global coral bleaching event on reefs in Australia and elsewhere continued to be at the forefront of Program 2 research in 2019. The series of papers led by Terry Hughes continued in 2019, with new research published in Nature and Nature Climate Change. This research showed that the impact of climate change on coral reefs extends to the impairment of ‘stock-recruitment dynamics’ – the fewer coral colonies remaining alive, the lower the capacity of those survivors to produce enough offspring to replenish the population – which has profound implications for the rest of the reef ecosystem (p26). Moreover, ecological memory of prior bleaching events can modify the cumulative impact of recurrent thermal stress. The Centre’s further work on this global bleaching event on the Great Barrier Reef and eastern Australian sub-tropical reefs shows the potential for refugia at depth (Andrew Baird in Marine Ecology Progress Series) and at high latitudes (Sun Kim and John Pandolfi in Global Change Biology).

Program 2 researchers made other important contributions to our understanding of the effects of climate change on coral reefs. In Nature Communications, Verena Schoepf and Malcolm McCulloch showed that corals resistant to thermal stress may still not be able to acclimatise to ocean warming. Jenni Donelson, Philip Munday and John Pandolfi worked with an international team of ecologists to publish a review in Philosophical Transactions of the Royal Society B on interactions between plasticity, adaptation and range shifts in response to marine environmental change.

In addition to their work on effects of climate change, Program 2 researchers made other important contributions to the fundamental understanding of the ecology and evolution of reef systems. For example, a Science paper from David Bellwood and colleagues showed the importance of small marine vertebrates (e.g. small cryptobenthic fish, like blennies) in maintaining ecological functions of coral reefs. John Pandolfi published a paper in Nature Ecology & Evolution with an international team on the global impacts of marine exotic species. In Nature Communications, Peter Mumby and colleagues showed how the supply of coral larval and inter-reef connectivity is enhanced when the annual spawning event occurs over multiple lunar cycles. Jessica Hopf, Geoff Jones and Sean Connolly reported in Ecological Applications that both fisheries yields and metapopulation biomass are stabilised in the presence of no-take reserves, relative to without them.

Contributions to management and policy also formed an important component of Program 2 research in 2019, including a paper in Nature Sustainability by Graeme Cumming on how the concept of resilience can be applied in decision making for conservation. Peter Mumby and colleagues showed in Nature Climate Change that evolutionary responses of organisms during shifting environmental conditions can fundamentally change recommendations managers make for conservation actions. John Pandolfi published a paper in Nature Ecology & Evolution with an international team that highlighted the importance of a number of social-environmental drivers in the strategic management of coral. Finally, the 2nd Edition of The Great Barrier Reef: Biology, Environment & Management was published in 2019, co-edited by Michael Kingsford and Ove Hoegh-Guldberg along with Pat Hutchings from the Australian Museum.

Program 2 researchers received strong recognition for their work in 2019. For example, David Bellwood was awarded a highly prestigious ARC Australian Laureate Fellowship, and Jenni Donelson was awarded an ARC Future Fellowship (p9).

At the end of 2019, the Centre farewellled long-term Program leader Sean Connolly who, in 2020, will move to the Smithsonian Tropical Research Institute in Panama. Program 2 thanks Sean for his enduring contributions to the Centre. We look forward to future collaborations with him and to strengthening our links with the Smithsonian Institute. Similarly, Program 2 congratulates Program Leader Verena Schoepf who has been appointed as the MacGillavry Fellow, a tenure track position for talented female researchers, at the University of Amsterdam, strengthening the Centre’s extensive international alumni. Alana Grech was appointed as a new Program 2 leader in 2019, Graeme Cumming will take up a Program 2 leadership role in 2020.

Program 2 researchers also played key roles organising and participating in international workshops. Peter Mumby was an invited advisor at the Coral Triangle Initiative Workshop in Manado, Indonesia, to redesign the Regional Plan of Action. Morgan Pratchett led a workshop in the USA on ‘Coral demography in the Anthropocene’, bringing together coral biologists and demographic modelers to explore the consequences of increasing disturbances on the size and fate of reef-building corals.

Finally, Centre researchers continued to make important contributions to policy and management at a variety of domestic and international levels. These included multiple briefings to, and interactions with, the Great Barrier Reef Marine Park Authority to assist their publication of the Great Barrier Reef Outlook Report 2019, Alana Grech, Terry Hughes and Jon Brodie also prepared the ARC Centre’s submission to the Environmental Protection (Great Barrier Reef Protection Measures) and Other Legislation Amendment Bill 2019, and presented their submission to the Queensland parliamentary hearings on this Bill. Finally, the UN Food and Agricultural Organisation has included Peter Mumby’s team as part of a regional proposal to improve fisheries management in the Gulf of Thailand.
Waterways of Queensland and the Great Barrier Reef are suffering from pesticide management failure

Scientists say a failure of national management means excessive amounts of harmful chemicals — many now banned in other countries such as the European Union, USA and Canada — are damaging the nation’s waterways and the Great Barrier Reef.

The new study was led by Professor Jon Brodie from the ARC Centre of Excellence for Coral Reef Studies.

Professor Brodie says pesticides found at concentrations exceeding the nation’s own water quality guidelines have the potential to seriously damage aquatic plants and animals. Insecticides affect prawns in freshwater streams, and herbicides affect marine species such as seagrass.

“The notorious insecticide imidacloprid — now banned for its effects on bees across Europe, the USA and soon to be banned in Canada — is found in many freshwater streams and estuaries in the Great Barrier Reef and also Queensland more broadly,” Prof Brodie said.

“This can have a serious effect on aquatic life.”

The regulation and management of pesticides in Australia is a joint responsibility of the Australian and Queensland governments.

“There is no evidence at the moment that imidacloprid Australia is a joint responsibility of the Australian and Queensland governments,” Prof Brodie said.

“The APVMA are very slow to act on the copious evidence surrounding, for example, the continued use of a pesticide like imidacloprid.”

The highest concentrations of pesticides, often found above Australian guidelines, are found in freshwater bodies adjacent to, and downstream of, areas of intensive cropping. This is mainly sugarcane cultivation and horticulture.

Prof Brodie says Australia has the expertise and knowledge of pesticide management to take action and regulate.

“Though pesticide regulation and management in the Great Barrier Reef region has been unsuccessful, there is some hope that pesticide levels and risks to species and ecosystems can be reduced,” he said.

Cardinalfish caught sneaking a bit on the side

Scientists have revealed the torrid, adulterous love lives of the mouth-brooding cardinalfish, with cuckoldry going hand-in-hand with cannibalism of the young.

“This is a small and unassuming coral reef fish,” said Dr Theresa Rueger, who led the study while she was a student at the ARC Centre of Excellence for Coral Reef Studies (Coral CoE).

On the surface, everything seemed to be as expected, with the pairs of fish apparently monogamous and forming larger social groups.

“Looking at the babies they produced, we saw that most of them do exclusively breed with their own partner,” Dr Rueger said.

But on closer examination the researchers discovered some sneaky behaviour!

“When presented the chance, both males and females take the opportunity to mate with other individuals from outside the group.”

After observing and analysing cardinalfish populations in Papua New Guinea for two years, the researchers found that of 115 broods analysed from 64 males, 30% were mothered by a female that was not the partner, about 11% of broods included eggs from two females, and more than 7% of broods were fertilised by two males.

As with most apparently monogamous species who invest time and energy rearing their young, these fish make sacrifices to ensure their babies survive. Paternal care, especially when the male carries the eggs in his mouth, is associated with a high degree of confidence in paternity.

“Staying faithful and caring for your offspring can be a winning evolutionary strategy,” added co-author Dr Hugo Harrison, also from Coral CoE.

“By caring for the brood, males increase the survival of their offspring but also allow their partner to allocate energy they would need to brood the eggs themselves. Paternity, care, especially when the male carries the eggs in his mouth, is associated with a high degree of confidence in paternity.

“Stay faithful and caring for your offspring can be a winning evolutionary strategy,” added co-author Dr Hugo Harrison, also from Coral CoE.

“By caring for the brood, males increase the survival of their offspring but also allow their partner to allocate energy they would need to brood the eggs themselves. Paternity, care, especially when the male carries the eggs in his mouth, is associated with a high degree of confidence in paternity.”

RESEARCHER PROFILE: YVES-MARIE BOZEC

Yves-Marie Bozec is a Research Fellow in the Ecosystems Dynamics Program (Program 2) based at the University of Queensland node of the Centre. Growing up in France, Yves-Marie spent his childhood in the wetlands on the Atlantic coast, surrounded by salt marshes, mudflats and oyster farms. He vividly remembers exploring the intertidal zone with a shovel, hand net or crab hook. This is where his passion for marine life first began.

Yves-Marie completed an undergraduate degree in population biology and a MSc in oceanography and marine ecology at the University of Pierre et Marie Curie in France. A holiday in Egypt led Yves-Marie to his first snorkelling experience on a coral reef. This inspired a move to New Caledonia to complete his thesis project studying fish-habitat relationships on coral reefs. His PhD continued this coral reef theme, focusing on the response of coral reef fish to human-driven disturbances. During this research he developed a deep understanding of ecological statistics and modelling which later proved to be pivotal for his research career. In 2007, Yves-Marie moved to Mexico to study the impact of coastal development on corals, macroalgae and herbivorous fish on Yucatan reefs. This provided him with a sound knowledge of Caribbean reef ecology, and triggered his interest in coral-algal phase shifts. Back in France, he focussed on artificial intelligence applied to fisheries management, and developing indicators of fishing effort along the French Mediterranean coast. While these were enriching experiences, they were a long way from his passion for coral reefs. Yves-Marie realised that his skills in community ecology, modelling and bioinformatics could make an original contribution to coral reef science. His chance came in 2010, when Yves-Marie took up a postdoctoral fellowship at the University of Queensland – to develop simulation models of reef resilience in the Caribbean. This research led to explicit recommendations for an ecosystem-based management of Caribbean reefs (Proceedings of the National Academy of Sciences, 2016).

Yves-Marie joined the ARC Centre in 2015, to investigate the mechanisms of reef resilience in the Indo-Pacific (Palau, French Polynesia, and the Great Barrier Reef). In 2017, he started an ambitious project aimed at modelling coral populations along the length of the Great Barrier Reef (GBR), integrating the dynamics of larval connectivity, water quality, cyclones, marine heatwaves and crown-of-thorns starfish outbreaks. A later model incorporated evolutionary genetics in order to evaluate the scope of corals to adapt to ocean warming. This is the first model that attempts to reconstruct the recent reef trajectories across the GBR from the simulation of coral reproduction, growth and mortality from multiple stressors. It forms the basis of a suite of resilience tools enabling researchers and managers to explore strategic management options across the GBR, including improvement of water quality, starfish culling, protection from fishing, and coral population dynamics under climate change.
The Great Barrier Reef Was Seen as ‘Too Big to Fail’. A Study Suggests It Isn’t.
by Livia Albeck-Ripka

A study found that mass bleaching events had not only caused adult corals to die off, but also led to a decline in new corals settling on the reef.

MELBOURNE, Australia — For millennia, ecosystems have withstood fires, floods, heat waves, drought and even disease by adapting and rebuilding their biodiverse communities.

But according to new research, there is a limit to what even the largest and most resilient places can stand, and climate change is testing that limit by repeatedly disturbing one of the earth’s most precious habitats: the Great Barrier Reef.

The study, released Wednesday in the journal Nature by researchers from the ARC Center of Excellence for Coral Reef Studies in Australia, monitored the death and birth of corals following ocean heat waves that caused mass bleaching of the Great Barrier Reef in 2016 and 2017.

Not only did many of the adult corals die off, but for the first time, researchers observed a significant decline in new corals settling on the reef, compromising its capacity to recover.

“We never thought we’d see this happen,” he said. “The study is the first to show the collapse of fundamental ecosystem processes in a marine environment, Professor Baird said.

“We thought the Barrier Reef was too big to fail,” he said, “but it’s not.”

The Great Barrier Reef, off Australia’s east coast, covers 133,000 square miles and can be seen from outer space. It pumps 6.4 billion Australian dollars, or $4.5 billion, into the Australian economy per year and supports tens of thousands of jobs, according to 2017 figures from Deloitte.

But in recent years, research has shown that the time left to save it is growing short.

Since 1998, the Great Barrier Reef has suffered four mass bleaching events, two of them back to back in 2016 and 2017. While coral populations can recover from a bleaching event — which stresses individual corals and strips them of their vibrant color — they need up to a decade to do so. And if carbon emissions continue at the high-emissions scenario, bleaching will occur twice every decade starting in 2035, and annually after 2044, according to climate models from UNESCO.

“It’s not too late to act, but time is running out,” Professor Baird said, adding that without drastic climate action, reefs will be “fundamentally changed, as will everything.”

Coral reefs were among the first ecosystems to respond to the rise in global temperatures, he said, “but it’s only a matter of time before these changes are happening in our back gardens.”

According to the researchers’ findings, the settlement of baby corals on the reef declined 89 percent last year. The coral that experienced the most significant decline in new organisms, at 93 percent, was a type called Acropora, which provides most of the reef habitat that supports thousands of other species, including coral trout, clown fish and triggerfish.

Adult corals that were further south escaped bleaching, but they were too far from the bleached northern reefs to help them replenish, the scientists found. They also explored the impact of back-to-back cyclones in 2014 and 2015 on the reef’s north at Lizard Island, which, despite killing off 80 percent of the adult corals, did not cause a decline in new corals settling.

“Cyclones are fairly patchy,” Professor Baird said, whereas heat and bleaching “just kills everything.”

The corals that do manage to survive such trauma, however, were found to be more resistant to periods of extreme warmth in a separate study conducted by Professor Baird and his colleagues last year. Scientists have been trying to breed the most resilient forms of coral in the hope that they can use these to repopulate the reef.

While crucial, such projects are limited, said Mark Eakin, the coordinator of the National Oceanic and Atmospheric Administration’s Coral Reef Watch program, who was not involved in the study but has previously worked with the Australian researchers.

“Those are at the scale of a large family garden,” he said, of the restoration efforts, whereas the collapse of the Great Barrier Reef would mean “the loss of an entire seascape,” akin, he said, to the fall of the Roman Empire.

“This is just further evidence of how much damage climate change is having,” Dr. Eakin said.

Russ Babcock, a senior research scientist at an Australian government agency called the Commonwealth Scientific and Industrial Research Organization, said the study, which he was also not involved in, had confirmed many scientists’ worst fears.

“All ecosystems have some things in common, and one of them is the ability to recover,” he said. “There’s going to be no lucky escape.”

Associate Professor Maja Adamska

Associate Professor Maja Adamska, from The Australian National University, is co-leader of Research Program 3. Her graduate and first postdoctoral projects addressed interactions between signalling pathways and transcription factors during vertebrate development. To pursue her interests in the evolutionary origin of animal developmental regulatory genes, Maja moved to The University of Queensland to study them in the first sponge to have its genome sequenced, Amphimedon queenslandica. From 2007 to 2015, Maja was a group leader at the Sars International Centre for Marine Molecular Biology in Bergen, Norway, and in 2015 she established a laboratory at the Research School of Biology at The Australian National University. Maja was awarded an ARC Future Fellow in 2017, and she continues to investigate the evolutionary origin of key developmental processes, such as cell type specification, segregation of germ layers and axial patterning of embryos and adults. Recent major research themes in her laboratory include regeneration of sponges and corals, in particular the mechanisms regulating gene expression, as well as sponge-bacterial symbiosis. Maja is also deeply interested in the emergence of complex multicellularity and its genomic background.

Associate Professor Mia Hoogenboom

Associate Professor Mia Hoogenboom, from James Cook University, is co-leader of Research Program 3. Mia is an expert on coral reef ecophysiology. She received her PhD in 2008 from JCU. From 2008–2011, Mia was a Research Fellow at the Centre Scientifique de Monaco, and later at the University of Glasgow. Mia has broad research interests in physiology and ecology, and her research establishes mechanistic links between environmental change, physiology, and population and community dynamics. Her ecotoxicology research informs strategies for managing the impacts of environmental contaminants on coastal marine ecosystems. Mia's research is multi-disciplinary and collaborative. Over the last 10 years, she has published a diverse range of papers with >150 authors in 15 countries. Mia has published more than 60 papers in leading international journals; including, Trends in Ecology and Evolution, Nature, Science and Current Biology. She also actively participates in educational outreach programs that provide exciting marine biology field and laboratory experiences for secondary school students.

Professor Ryan Lowe

Professor Ryan Lowe, from the UWA Oceans Institute at The University of Western Australia (UWA), is co-leader of Research Program 3. Ryan’s research examines how oceanic and atmospheric forcing drives the circulation, distribution of wave energy, and water level variability within the coastal zone, with a particular focus on processes that occur along coral reef coastlines. Major areas of his research focus on: improving predictions of coastal flooding and erosion risk along reef coastlines, identifying how ocean dynamics drive environmental variability within coral reefs, and multidisciplinary research into how oceanographic processes shape reef ecosystems. Ryan received his PhD in Civil and Environmental Engineering in 2005 from Stanford University, USA and has been based at UWA since 2007. He has authored more than 100 papers in leading international journals, as well as numerous technical reports for government and industry. Ryan is the Editor of the Journal of Geophysical Research – Oceans, he serves on the Expert Group in Physical Oceanography for the Australian Meteorological and Oceanography Society and on Australia’s Surface Waves Working Group. In 2012, Ryan was awarded a four-year ARC Future Fellowship, and in 2014 he was the recipient of the UWA Vice Chancellor’s Mid-Career Researcher Award.
Research in Program 3 aims to understand and predict the responses of coral reef organisms and ecosystems to environmental change, particularly due to climate change and declining water quality. Biological responses of reefs to changing conditions are investigated from three tightly interlinked perspectives: the dynamics of the complex associations between corals and their symbiotic dinoflagellates and microbes; the physiological plasticity and capacity for adaptation of organisms, populations and species; and the stability of the carbonate frameworks that are synthesised and maintained by corals and other reef organisms.

In 2019, Program 3 researchers contributed major advances in understanding how coral reef organisms can acclimatise and/or adapt to stressors in the environment. In January, Jenni Donelson was the lead editor of a special issue in Philosophical Transactions of the Royal Society B on the role of plasticity in phenotypic adaptation to rapid environmental change. In a major review paper published in Reviews in Fish and Fisheries, PhD student Ian Bouyoucos and Jodie Rimmer evaluated the use of oxygen uptake (respirometry) techniques for measuring stress in sharks and rays. Student-led research, published in Frontiers in Ecology and Environment by PhD student Hannah Epstein and co-author Greg Torda, explored the utility of microbiome engineering as a mechanism to enhance climate resilience of reef corals.

A central theme of research conducted in Program 3 during 2019 was understanding the responses of organisms to increasing ocean temperature. The importance of this research was emphasised by Ove Hoegh-Guldberg, who was jointly lead author with Jean-Christian DeCarlo and Hugo Harrison, in a review paper published in Nature Climate Change, which demonstrated a marked decline in the proportion of corals showing a chemical signature of heat stress over periods of years to decades. This latter study indicated that at least some corals can acclimatise to environmental change fast enough to keep pace with global warming.

Field-based studies conducted by Program 3 researchers revealed some of the environmental drivers of coral growth, abundance and diversity. Sophie Dove and Ove Hoegh-Guldberg showed a major shift in intertidal communities over a 91-year study in the Low Isles on the north-eastern Great Barrier Reef (Nature Communications). During 2019, PhD student Camille Grimaldi and Ryan Lowe expanded the ARC Centre's research into the remote atolls off north-western Australia, as part of a joint research program with the Australian Institute of Marine Science (AIMS), to investigate oceanic drivers of reef connectivity. This new research builds on several research outputs in 2019 that reveal how oceanographic processes shape the ecology of the Scott Reef system of atolls. Complementing these field studies, results of combined field and mesocosm experiments conducted in Western Australia were also published in 2019. These new studies in Nature Climate Change, conducted by Steeve Comeau, Chris Cornwall and Tom DeCarlo, showed that water flow can have significant physiological effects on the calcifying fluid within coral tissues, as determined using novel geochemical and spectrophotometric proxies (p32).

New studies by researchers in Program 3 this year highlighted the effects of various pollutants on coral reef organisms. Research by Mia Hoogenboom and collaborators in Environmental Pollution, revealed species-specific effects of microplastics on reef corals, and quantified levels of plastic debris in a river system that flows into the Great Barrier Reef catchment. Experimental studies conducted by Philip Munday and colleagues evaluated the effects of oil exposure on the sensory systems of coral reef fish (Environmental Science & Technology), and work by Mark McCormick showed the effects of exposure to boat noise on reef fish behaviour (Scientific Reports). Janice Lough developed and implemented new tools, based on the chemical composition of coral skeletons, to understand past and present concentrations of sediment and nutrients in coral reef waters (Coral Reefs).

In 2019, Program 3 researchers contributed to new understanding of the interactions between marine invertebrates and their single-cell symbionts. Building on the Australian Academy of Science Boden Workshop host the ARC Centre in 2018, David Miller and Maja Adamska worked with a global network of experts to publish two major outlook papers on symbiosis in the journal Zoology. Miller and the late Sylvia Forêt also co-authored a series of high-profile papers, addressing the interactions between reef-building corals and their bacterial and Symbiodinium partners. Miller, Adamska, and collaborators made major contributions to understanding the evolution of animal complexity, by developing and implementing novel genomic approaches. Several landmark papers in this area were published in 2019, including the whole genome sequence of Acropora millepora (Genome Biology and Evolution) and a study of the evolution of genome methylation mechanisms (Nature Ecology and Evolution).

In 2019, Program 3 researchers continued their ongoing commitment to public engagement. Maja Adamska contributed to an article about the evolution of animal cell types in the popular science magazine Quanta, and an opinion piece in Nature Ecology and Evolution. Adamska also co-organised an international workshop on Host-Microbiome Interactions. Jodie Rimmer gave a Planet Talk at WOMADelaide, about the effects of oil drilling and pollution on marine life, and presented ‘Let’s talk: Sharks’ at the World Science Festival in Brisbane. Program 3 congratulates Jodie, who was recognised as the 2019 Queensland Young Tall Poppy Scientist of the Year (p8).
Coral reefs can’t return from acid trip

A new study published today in Nature Climate Change finds coral reefs are under threat from ocean acidification.

The study was led by researchers from the ARC Centre of Excellence for Coral Reef Studies (Coral CoE). Their results suggest that some corals and coralline algae – the “glue” that holds reefs together – cannot survive the expected acidification of oceans caused by climate change.

“The results validate previous research on ocean change. The effects on the calcifying fluid were rapid and persisted for the whole year,” Prof McCulloch said.

“Declines in coralline algae could lead to the loss of important marine species that use the algae as a nursery,” he explained.

“The results also confirm that ocean acidification could have repercussions on the competition between species. This can affect the ecological function of reefs,” Dr Comeau added.

He said the team did find two coral species were resistant to ocean acidification. However, these are corals that were resistant from the start.

“This result indicates they already had an in-built mechanism that made them resistant;” he explained, “whereas sensitive corals were affected from the start and were not actually able to acclimatise.”

The study suggests the composition and function of future reefs — if they can survive climate change — will be very different to what we see today.

“Internal increases of 2°C or more of climate change.”

“Current emission reduction commitments are inadequate and risk throwing many nations into chaos and harm, with a particular vulnerability for poor peoples,” Prof Hoegh-Guldberg said.

“To avoid this, we must accelerate action and tighten emission reduction targets so that they fall in line with the Paris Agreement,” he said.

“This is much less expensive than suffering the impacts of 2°C or more of climate change.”

Investigating in climate change is good business

According to a new study published today in Science, reducing the magnitude of climate change is a good investment.

Acting over the next few decades to reduce the rate of change is expected to cost much less than the damage otherwise inflicted – on people, infrastructure and ecosystems – by not taking action.

Climate change impacts are now occurring faster and are more extensive than previously projected. Lead author Prof Ove Hoegh-Guldberg, Deputy Director of the ARC Centre for Excellence for Coral Reef Studies, explained the mismatch. “First, we underestimated the sensitivity of natural and human systems to climate change and the speed at which these changes are happening,” he said.

“Second, we underestimated the synergistic nature of climate threats, with the outcomes tending to be worse than the sum of the parts. This results in rapid and comprehensive climate impacts, with growing damage to people, ecosystems, and livelihoods.”

For example, sea-level rise can lead to higher water levels during storm events and exacerbate the resulting damage. In already deprived areas this may intensify poverty, creating further disadvantage.

Prof Daniela Jacob, co-author and Director of Climate Services Centre (GERICS) in Germany, is concerned about these rapid changes — especially in regard to unprecedented weather extremes.

“We are already in new territory,” Prof Jacob said.

Since the Paris Agreement, there has been a race to quantify the benefits of limiting warming to 1.5°C to best inform policy to meet this target. “If such policy is not implemented, we will continue on the current upward trajectory of burning fossil fuels and continuing deforestation, which will expand the already large-scale degradation of ecosystems,” Prof Warren from the Tyndall Centre in the UK said.

A recent report from the United Nations projected that as many as a million species may be at risk of extinction over the coming decades and centuries. Climate change is not the only factor—but is one of the most important ones.

“The developing African countries are amongst those most affected in terms of projected impacts on economic growth, in the absence of strong climate change mitigation,” stated Prof Engelbrecht co-author from the Global Change Institute of the University of the Witwatersrand in South Africa.
RESEARCHER PROFILE: OVE HOEGH-GULDBERG

Ove Hoegh-Guldberg is Deputy Director of the ARC Centre and in the Responding to a Changing Program (Program 3), based at The University of Queensland. Growing up in Sydney, Ove spent his youth exploring and diving in Sydney Harbour. His interest in coral reefs was heightened when he had the opportunity to be an undergraduate field assistant for Professor Peter Sale on One Tree Island. After seeing some of the world’s most spectacular reefs, Ove’s fate was sealed.

Ove’s PhD studies at the University of California, Los Angeles, were on the symbiosis of dinoflagellates with cnidarian hosts. Fieldwork in Israel and at Lizard Island led him to research that identified elevated temperatures as the most likely trigger for coral bleaching events that were commencing on the Great Barrier Reef in the mid-1980s. Following his PhD, Ove completed a postdoctoral fellowship at the University of Southern California (which involved ice diving in Antarctica!), before he returned to Australia to take up a lectureship at the University of Sydney.

Continuing his interest in climate change and coral reefs, Ove and his team identified the collapse of PSII/ RuBisCo under heat stress as the most likely mechanism explaining the sudden disintegration of coral-algal symbioses during heat stress. In 1999, Ove integrated these observations with the output of a number of climate models, projecting for the first time that tropical oceans would get too warm for coral reefs by mid-century if we didn’t rapidly curb emissions of greenhouse gases. Two decades later, these projections have been sadly supported by the catastrophic loss of 50% of shallow water corals on the Great Barrier Reef and other sites globally.

As evidence has accumulated about the huge threat that ocean warming and acidification poses for coral reefs, Ove and colleagues have increasingly built research programs for understanding the problems and solutions for coral reefs globally. For example, the XL-Catlin Seaview Survey measured the benthic structure over 1000 km of coral reefs across 25 countries. Ove also plays a significant role in the United Nations Intergovernmental Panel on Climate Change (IPCC), such as Coordinating Lead Author of the ‘Ocean’ chapter for the Fifth Assessment Report, and the ‘Impacts’ Chapter in the IPCC Special Report on the implications of global warming of 1.5°C.

Ove has authored over 350 peer-reviewed publications (>35 in Science, Nature or PNAS) and has been cited nearly 60,000 times. He has been awarded a Eureka Prize for his research, as well as a Queensland Premier’s Fellowship, and an ARC Australian Laureate Fellowship. He was elected to the Australian Academy of Science in 2013, received the Prince Albert II Award for Climate Change in 2014, and the International Award from the Banksia Foundation in 2016. Ove is a Highly Cited Researcher (top 1% of his field) and, in 2019, was listed by Apolitical as one of the 100 most influential people in Climate Policy in the world.
Diving on the remote coral reefs in the north of Western Australia during the world’s worst bleaching event in 2016, the first thing I noticed was the heat. It was like diving into a warm bath, with surface temperatures of 34°C.

Then I noticed the expanse of bleached colonies. Their bright white skeletons were visible through the translucent tissue following the loss of the algae with which they share a biological relationship. The coral skeletons had not yet eroded and collapsed, a grim reminder of what it looked like just a few months before.

I spent the past 15 years documenting the recovery of these reefs following the first global coral bleaching event in 1998, only to see them devastated again in the third global bleaching event in 2016.

The WA coral reefs may not be as well known as the Great Barrier Reef, but they’re just as large and diverse. And they too have been affected by cyclones and coral bleaching. Our recent study found many WA reefs now have the lowest coral cover on record.

When my colleague, Rebecca Green, witnessed that bleaching, she asked me how the future of WA’s coral reefs would be. “Probably not in my lifetime” was my reply – an abrupt and accurate reply considering the previous rate of recovery, future increases in ocean temperatures ... and my age.

The worst mass bleaching on record

A similar scene is playing out around the world as researchers document the decline of ecosystems they have spent a lifetime studying.

Our study, published in the journal Coral Reefs, is the first to establish a long-term history of changes in coral cover across eight reef systems, and to document the effects of the 2016 mass bleaching event at 401 sites across WA.

Given the vast expanse of WA coral reefs, our assessment included data from several monitoring programs and researchers from 19 institutions. These reefs exist in some of the most remote and inaccessible parts of the world, so our study also relied on important observations of coral bleaching from regional managers, tourist operators and Bardi Jawi Indigenous Rangers in the Kimberley.

Our aim was to establish the effects of climate change on coral reefs along Western Australia’s vast coastline and their current condition.

The heat stress in 2016 was the worst on record, causing mass bleaching and large reductions in coral cover at Christmas Island, Ashmore Reef and Scott Reef. This was also the first time mass bleaching was recorded in the southern parts of the inshore Kimberley region, including in the long oral history of Indigenous Australians who have managed this Sea-Country for thousands of years.

The mass bleaching events we documented were triggered by a global increase in temperature of 1°C above pre-industrial levels, whereas temperatures are predicted to rise by 1.5°C between 2030 and 2052.

In that scenario, the reefs that have bleached badly will unlikely have the capacity to fully recover, and mass bleaching will occur at the reefs that have so far escaped the worst impacts.

The future of WA’s coral reefs is uncertain, but until carbon emissions can be reduced, coral bleaching will continue to increase.

Surviving coral reef refuges must be protected

The extreme El Niño conditions in 2016 severely affected the northern reefs, and a similar pattern was seen in the long-term records.

The more southern reefs were affected by extreme La Niña conditions – most significantly by a heatwave in 2011 that caused coral bleaching, impacted fisheries and devastated other marine and terrestrial ecosystems.

Since 2016, all of WA’s reefs systems have bleached at least once.

Coral bleaching is an indicator of climate change because it is the response of corals to rising temperatures. If this is the new baseline, there will be no recovery as the temperatures will continue to increase.
Great Barrier Reef Governance

The global dynamics of greenhouse gas emissions represents the single largest threat to the world’s coral reefs. The Centre’s research on climate change, including a series of high profile papers in Science and Nature in 2017-2019, has been highly influential in drawing attention to the governance challenges of anthropogenic climate change (GBRMPA 2019). Drawing on the Centre’s research, the Intergovernmental Panel on Climate Change (IPCC) Special Report (2018) concluded that most coral reefs will struggle to cope with further increases of global average temperatures of 0.5°C to 1°C above current levels. The Special Report concluded that global carbon emissions need to be slashed to 45% of 2010 levels by 2030 to secure the future of coral reefs.

Governance – the ways in which sectors of society share power and make decisions – is an area of active multidisciplinary research in the ARC Centre of Excellence for Coral Reef Studies. Governance has two interacting elements, formal and informal. Formal governance of the Great Barrier Reef is primarily the responsibility of the Commonwealth and Queensland State governments and their agencies, with international oversight from UNESCO and the World Heritage Committee. The informal governance of the Great Barrier Reef is increasingly powerful and diverse, and has played an often-unrecognised role in stewardship of the Reef.

Governance of the Great Barrier Reef, broadly defined, has evolved substantially over time – from a local mix of fishing and tourism stakeholders, local conservation groups, scientists, and Traditional Owners to a much more complex governance regime today that now includes the fossil fuel and mining industries, ports, agricultural industries, the media, international tourists, and globally-active environmental NGOs. Increasingly, securing a future for the Great Barrier Reef under climate change is as much a political challenge as an ecological or social one (Morris et al. 2019).

The establishment of the Great Barrier Reef Marine Park Authority (GBRMPA) in 1976 was a major innovation in governance. It established the world’s largest marine protected area, which five years later, in 1981, became the first marine World Heritage Area. However, four decades later, the major drivers affecting the Property all originate outside its boundary, especially climate change. The proximate drivers of fishing and pollution on the GBR are themselves driven by distant dynamics in national and transnational markets, consumption, wealth and human demography. The Centre’s recent research has focussed on addressing this mismatch in scale and framing (Bellwood et al. 2019, Morrison et al. 2019). Poorly-scaled governance has focused attention on symptoms (e.g. loss of corals, outbreaks of crown-of-thorns starfish), rather than the root causes of ecological decline. For example, the recent global coral bleaching events have further exposed the limitations of conventional place-based ecosystem governance. In some countries, the preferences of the fossil fuel industry continue to outweigh those of the local communities, tourism and fishing industries, scientists, conservationists and domestic and international visitors.

In an article published in Nature in 2019, researchers from the ARC Centre suggested a new, holistic approach to safeguarding coral reefs – by focussing on the formal and informal governance of land as well as the ocean.

“We must take a new, bolder approach to tackle the underlying causes of coral reef decline,” lead author Prof Morrison said. “This means fixing the causes on a global, as well as local, scale – both in the sea and on land.”

As an example, to protect the Great Barrier Reef, Prof Morrison suggested policymakers in Australia should replace coal-fired power with renewable energy sources, and restore or rehabilitate terrestrial vegetation and wetlands in the 425,000-square-kilometre catchment of the Great Barrier Reef. “Done strategically, these actions can reduce global emissions, capture carbon, curb agricultural runoff onto coastal reefs while also enhancing people’s livelihoods and food security,” she said.

The Nature article argues that current approaches to coral reef conservation are failing to protect local biodiversity on reefs, where trying to restore damaged corals or build resilience is the main focus. The authors concluded that reefs won’t disappear if we tackle the root cause of their decline. They suggest that a bolder, scaled-up approach to the stewardship of land and sea—focused initially on coral reefs—could itself help society meet this goal. Coral reefs cover only 0.5% of the ocean floor, but they support almost 30% of the world’s marine fish species. 400 million people depend on reefs for work, food and protection from waves, storms and floods.

“What we’re suggesting is feasible and bold,” the authors said. “Countries, States and cities such as Costa Rica, California and Copenhagen have all taken up initiatives to curb greenhouse gas emissions and provide alternative economic opportunities that set powerful examples for the rest of the world.” The Nature article urges scientists, -policymakers, non-governmental organisations and philanthropists to develop similarly bold strategies to protect reefs, other ecosystems and people in a warming world.

References

14
The Great Barrier Reef outlook is ‘very poor’. We have one last chance to save it.

by Terry Hughes

It’s official. The outlook for the Great Barrier Reef has been downgraded from “poor” to “very poor” by the Australian government’s own experts.

That’s the conclusion of the latest five-yearly report from the Great Barrier Reef Marine Park Authority, released on Friday. The report assessed literally hundreds of scientific studies published on the reef’s declining condition since the last report was published in 2014.

The past five years were a game-changer. Unprecedented back-to-back coral bleaching episodes in 2016 and 2017, triggered by record-breaking warm sea temperatures, severely damaged two-thirds of the reef. Recovery since then has been slow and patchy.

Looking to the future, the report said “the current rate of global warming will not allow the maintenance of a healthy reef for future generations […] the window of opportunity to improve the reef’s long-term future is now”.

But that window of opportunity is being squandered so long as Australia’s and the world’s greenhouse gas emissions continue to rise.

The evidence on the reef’s condition is unequivocal

A logical national response to the Outlook Report would be a pledge to curb activity that contributes to global warming and damages the reef. Such action would include a ban on the new extraction of fossil fuels, phasing out coal-fired electricity generation, transitioning to electrified transport, controlling land clearing and reducing local stressors on the reef such as land-based runoff from agriculture.

But federal Environment Minister Sussan Ley’s response to the outlook report suggested she saw no need to take dramatic action on emissions, when she declared: “it’s the best managed reef in the world”.

The federal government’s lack of climate action was underscored by another dire report card on Friday. Officials quarterly greenhouse gas figures showed Australia’s greenhouse gas emissions have risen to the highest annual levels since the 2012-13 financial year.

But rather than meaningfully tackle Australia’s contribution to climate change, the federal government has focused its efforts on fixing the damage wrought on the reef. For example as part of a A$444 million grant to the Great Barrier Reef Foundation, the government has allocated $100 million for reef restoration and adaptation projects over the next five years or so.

Solutions being supported by the foundation include a sunscreen-like film to float on the water to prevent light penetration, and gathering and reseeding coral spawn. Separately, Commonwealth funds are also being spent on projects such as giant underwater fans to bring cooler water to the surface.

But the scale of the problem is much, much larger than these tiny interventions.

Climate change is not the only threat to the reef

The second biggest impact on the Great Barrier Reef’s health is poor water quality, due to nutrient and sediment runoff into coastal habitats. Effort to address that problem are also going badly.

This was confirmed in a confronting annual report card on the reef’s water quality, also released by the Commonwealth and Queensland governments on Friday. It showed authorities have failed to reach water quality targets set under the Reef 2050 Plan – Australia’s long-term plan for improving the condition of the reef.

For example the plan sets a target that by 2025, 90% of sugarcane land in reef catchments should have adopted improved farming practices. However the report showed the adoption had occurred on just 9.8% of land, earning the sugarcane sector a grade of “E”.

So yes, the reef is definitely in danger

The 2019 Outlook Report and other submissions from Australia will be assessed next year when the UNESCO World Heritage Committee meets to determine if the Great Barrier Reef should be listed as “in danger” – an outcome the federal government will fight hard to avoid.

An in-danger listing would signal to the world that the Reef was in peril, and put the federal government under greater pressure to urgently prevent further damage. Such a listing would be embarrassing for Australia, which presents itself as a world’s-best manager of its natural assets.

The Outlook Report maintains that the attributes of the Great Barrier Reef that led to its inscription as a world heritage area in 1981 are still intact, despite the loss of close to half of the corals in 2016 and 2017. But by any rational assessment, the Great Barrier Reef is in danger. Most of the pressures on the reef are ongoing, and some are escalating – notably anthropogenic heating, also known as human-induced climate change.

And current efforts to protect the reef are demonstrably failing. For example despite an ongoing “control” program, outbreaks of the damaging crown-of-thorns starfish – triggered by poor water quality – have spread throughout the reef.

The federal government has recently argued that climate change should not form the basis for an in-danger listing, because rising emissions are not the responsibility of individual countries. But as Australia’s greenhouse gas emissions continue to rise, the continued downward trajectory of the Great Barrier Reef is inevitable.

https://theconversation.com/the-great-barrier-reef-outlook-is-very-poor-we-have-one-last-chance-to-save-it-122785
The ARC Centre of Excellence’s objective is to build human capacity and expertise in coral reef science worldwide. Our capacity-building has a global footprint: in 2019, the Centre provided training and mentoring to 124 international graduate students from 36 countries, representing 74% of our research student membership. Almost 70% of the Centre’s Early Career Researchers (ECRs) come from overseas.

Students and ECRs are essential contributors to the Centre’s activities, publication outputs and success. During 2019, the Centre provided supervision, research funding and support to 170 research students across the four nodes of the Centre, >80% of whom are PhD students and 60% are women. Twenty-seven students completed their PhDs in 2019, while we welcomed 39 new graduate students. The ARC Centre also supports 30 Early Career Researchers.

The Centre has created an exciting and multi-disciplinary intellectual environment, with 52 students having multi-disciplinary advisory panels, and 50 receiving cross-institutional supervision.

Key to the student experience in the Centre of Excellence is extensive mentoring and training opportunities, to build the next generation of coral reef research leaders. Quantitative and modeling skills continued to be a priority. For example, in March, 30 students and ECRs attended training courses in advanced statistics, using the R platform. Overwhelmingly positive feedback from participants reaffirmed the annual running of this course, presented by Murray Logan from our Centre-partner the Australian Institute of Marine Science. Weekly `CodeR` group meetings, hosted by DECRA Fellow Peter Cowman, provided statistics support, short talks and workshops on R, Python and Bash programming languages.

Writing retreats are a new addition to the Centre’s professional development program in 2019. Four retreats were hosted for students, in addition to weekly ‘Shut-up and Write’ sessions. The three-day retreats enable students to do extensive writing in a supportive environment, removed from everyday distractions. Survey responses from students revealed strong support for this activity, which encourages them to develop their thesis write-up in a collaborative environment.

Scientific writing skills continue to be a major focus of our training. Morgan Pratchett ran three workshops throughout the year, on efficient and effective scientific writing. In August, Joshua Cinner hosted a ‘Getting Published’ workshop for PhD students and ECRs. Topics included how to structure manuscripts effectively, the peer-review process, and building a portfolio of publications. Joshua’s workshop was also offered to all students attending the annual Australian Coral Reef Society Conference in 2019, as part of the ARC Centre’s National Student Mentoring Day. A long-standing and popular event, Joshua also ran this popular workshop in Kenya and at the University of Rhode Island, USA.

Communications and outreach was also a recurring feature of student and ECR training during 2019. In March, Alana Grech and Sean Connolly presented a workshop on Preparing your ARC ROPE for ECRs submitting Australian Research Council grant applications. Michele Barnes led a session on ‘How to wow the crowd with an effective scientific presentation’, focusing on both seminars and preparing for job interviews. Maria Nayga, the Centre’s new Digital Communications Officer, led multi-nodal workshops on ‘Creating video content for social media’ and ‘Let’s talk media’. Maria also ran workshops and one-to-one mentoring sessions for students, on developing concise oral presentations of their research. One participant, Alexandre Siqueira Correa, won both the judges and popular prize at JCU’s ‘My research in three minutes’ competition before going on to represent JCU at the national competition.

The ARC Centre supports a cross-nodal Student Committee and a Postdoctoral Committee, each of which is allocated funds and administrative support to develop an annual program of professional development. Thanks go to the 2019 Student Committee co-chairs, Katie Sievers and Shannon McMahon, and committee members Deborah Burn, Amy Cappock, Mike Mihaltzis, Henry Bartelet, Grace Cole, Laura Puk, Karin Zwerp and Netra Sagar from the JCU, UQ and UWA nodes of the Centre. Thanks also to Peter Cowman and Jenni Donelson who chaired the Postdoc Committee in 2019.

A major focus of both committees is the design and implementation of the annual research student and ECR retreats, convened in conjunction with the ARC Centre’s Annual Symposium. The 2019 student retreat was held in association with the Sydney Institute of Marine Science on Sydney Harbour. Fifty-three Centre students benefitted from the opportunity to collaborate with SIMS researchers, through scientific talks, presentations on how to review manuscripts, and on creating an effective covering letter and CV for job applications. The ECR retreat featured a session on ‘Tips and Tricks for ARC Success’ as well as a series of scientific and career development presentations, and a distinguished panel discussion featuring Greta Pecl.
ARC Centre of Excellence students received wide recognition for their research in 2019, for example:

- Jessica Cramp was appointed as an AIMS/THETFED Ambassador by the American Association for the Advancement of Science and Lynda Hill Philanthropists.
- Justin Geldard received a prestigious Keirin McNamara World Heritage Scholarship, to represent Australia at the international Our Ocean Youth Leadership Summit in Norway.
- Camille Grimaldi won the Australian Marine Sciences Association (AMSA) Diversity Prize for her presentation at the 2019 conference. Camille and Mario Conde-Frias won Rosan and Robertson Awards to support their research.
- Mila Grinblat was awarded the Robert Logan Memorial Bursary, to attend the workshop ‘At the roots of bilaterian complexity: insights from early emerging metazoans’ in Germany. Mila also won an Australian Coral Reef Society (ACRS) Travel Grant to attend the Society's 2019 conference, and she received an Orpheus Island Research Station Morris Family Trust Student Grant.
- Victor Huertas Martin and Ramona Brunner won ACRS Student Research Awards.
- Kelly Hannan attracted a Sea World Research and Rescue Foundation Grant and was also awarded the 2019 Lizard Island Reef Research Foundation Fellowship.
- Jacqueline Lau received the 2019 Glenn Almy Memorial Prize for her research in Papua New-Guinea on understanding the importance of ecosystem services in developing coastal communities. This prize is awarded to a Centre graduate student whose research required them to work with people beyond traditional academic boundaries, to make a difference or which has the potential to influence policy, management or practice.
- The ARC Centre’s Virginia Chadwick Awards recognise the most five most outstanding publications each year by ARC Centre of Excellence graduate students. In 2019, the recipients were Harry Clarke, Saskia Juriaans, Sun Kim, Renato Morais, and Ed Roberts, who are based at three nodes of the Centre of Excellence – James Cook University, The University of Queensland and The University of Western Australia.

2019 PhD STUDENTS IN THE ARC CENTRE

<table>
<thead>
<tr>
<th>Student Name</th>
<th>University</th>
<th>Country</th>
<th>Thesis Title</th>
<th>ARC Centre Advisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samantha Ard</td>
<td>JCU</td>
<td>Australia</td>
<td>Socio-ecological dynamics in archaeological shellfish fisheries: a case from the Keppel Range, Great Barrier Reef, Australia.</td>
<td>A Hoey</td>
</tr>
<tr>
<td>Mariana Alvarez Noriega</td>
<td>JCU</td>
<td>Mexico</td>
<td>Competition and coexistence of reef corals, (PhD awarded)</td>
<td>S Connolly, A Baird, M Hoogenboom</td>
</tr>
<tr>
<td>Danielle Avon-Batzel</td>
<td>JCU, AMIS, CSIRO</td>
<td>USA</td>
<td>Multi-scale patterns of benthic species composition in the Great Barrier Reef region and implications for spatial management.</td>
<td>R Pressey, S Connolly, T Bridge</td>
</tr>
<tr>
<td>Eoghan Aston</td>
<td>JCU</td>
<td>United Kingdom</td>
<td>Spatial dynamics of tropical shallow marine habitats and their related mobile marine faunal communities.</td>
<td>A Hoey</td>
</tr>
<tr>
<td>Kevin Barros Novak</td>
<td>JCU</td>
<td>Canada</td>
<td>Metapopulation dynamics of coral polyp dispersal and juvenile fish recruitment after severe bleaching events.</td>
<td>S Connolly, M Hoogenboom</td>
</tr>
<tr>
<td>Henry Bartleet</td>
<td>JCU</td>
<td>Netherlands</td>
<td>The resilience of ecologically-dependent human communities to disturbances within volatile socio-ecological systems.</td>
<td>G Cumming, S Connolly</td>
</tr>
<tr>
<td>Anne Bauer-Cruzeto</td>
<td>JCU</td>
<td>USA</td>
<td>From people to reef, marine deiffs and plastic pollution in north Queensland.</td>
<td>M Hoogenboom</td>
</tr>
<tr>
<td>Makeley Blandford</td>
<td>JCU</td>
<td>Australia</td>
<td>Interactions between fish and coral reefs: the influence of habitat degradation on fish communities.</td>
<td>M McCormick, A Hoey</td>
</tr>
<tr>
<td>Joshua Bonesso</td>
<td>UWA</td>
<td>Australia</td>
<td>Underpinning reef-island resilience to climate driven changes in moelacan flora in the Pilbara Archipelago, North West, Western Australia.</td>
<td>R Lowe</td>
</tr>
<tr>
<td>Chloé Boote</td>
<td>JCU</td>
<td>United Kingdom</td>
<td>The larval development, microbisse and stress response of the mushroom coral A Burlongia actinofus.</td>
<td>D Miller, A Myers</td>
</tr>
<tr>
<td>Ian Bouyouchos</td>
<td>JCU, CROBE</td>
<td>USA</td>
<td>A challenging environment in a changing world for juvenile fish: ecological energetics of climate change with implications toward conservation.</td>
<td>J Bumner</td>
</tr>
<tr>
<td>Christopher Brunner</td>
<td>JCU, AMIS</td>
<td>Germany</td>
<td>Cumulative impacts of water quality and climate change (sea surface temperature warming and ocean acidification) on important reef species.</td>
<td>M Hoogenboom</td>
</tr>
<tr>
<td>Ramona Brunner</td>
<td>JCU</td>
<td>Germany</td>
<td>The function and ligands of G-protein coupled receptors (GPCRs) in coral larval sensitivity.</td>
<td>D Miller, A Myers</td>
</tr>
<tr>
<td>Cinyret Ciglar</td>
<td>ANU</td>
<td>Germany</td>
<td>Sponge and coral regeneration: cellular and molecular characterisation of regeneration in reef building invertebrates.</td>
<td>M Admaka</td>
</tr>
<tr>
<td>Paula Cartwright</td>
<td>UWA</td>
<td>Australia</td>
<td>Meteocenozoic processes and anthropogenic influences in the southern coastal Pilbara/Brunswick Gulf: what are the primary drivers of water quality and habitat distribution?</td>
<td>R Lowe</td>
</tr>
<tr>
<td>Leela Chakravarti</td>
<td>JCU, AMIS, U Melbourne</td>
<td>United Kingdom</td>
<td>Manipulation of coral photobions for enhancing resilience to environmental change. (PhD awarded)</td>
<td>M Hoogenboom</td>
</tr>
<tr>
<td>Tony Cheah</td>
<td>JCU</td>
<td>USA</td>
<td>Effects of coral-dwelling damselfishes abundance and diversity on host coral dynamics. (PhD awarded)</td>
<td>M Hoogenboom, M Pratchett</td>
</tr>
<tr>
<td>Steve Cheevala</td>
<td>JCU</td>
<td>India</td>
<td>Understanding ecosystem service choices made by individual actors and their implications for social-ecological interactions.</td>
<td>G Cumming, T Morrison</td>
</tr>
<tr>
<td>Carolina Chong-Montenegro</td>
<td>UQ, US Embassy</td>
<td>Ecuador</td>
<td>Examining trajectories of decline of megafauna in our coastal seas.</td>
<td>J Pandolfi</td>
</tr>
<tr>
<td>Harry Clarke</td>
<td>UWA</td>
<td>Australia</td>
<td>Resolving the impacts of ocean warming and dredging in coral reefs collected from the NW shelf of Australia.</td>
<td>M McCulloch, JP D’Oliveira-Cr технологии</td>
</tr>
<tr>
<td>Mia Thessa Bulcercoreros Comeros</td>
<td>JCU</td>
<td>Philippines</td>
<td>Strengthening catchment to sea connections by evaluating the impacts of water quality on parrotfishes and reef fish assemblages in American Samoa.</td>
<td>A Hoey, G Ruis</td>
</tr>
</tbody>
</table>

ARC CENTRE OF EXCELLENCE FOR CORAL REEF STUDIES

44 ANNUAL REPORT 2019 45
<table>
<thead>
<tr>
<th>Student Name</th>
<th>University</th>
<th>Country</th>
<th>Thesis Title</th>
<th>ARC Centre Advisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mario Conde-Frias</td>
<td>UWA</td>
<td>Colombia</td>
<td>Investigating the sediment dynamics within submerged canyons for unidirectional and oscillatory flows.</td>
<td>R Lowe</td>
</tr>
<tr>
<td>Amy Coppock</td>
<td>JCU</td>
<td>United Kingdom</td>
<td>Climate change and disturbance events: the role of settlement behaviour and larval connectivity in changes to coral reef fish communities.</td>
<td>G.Jones, M.McCormick</td>
</tr>
<tr>
<td>Jessica Cramp</td>
<td>JCU</td>
<td>USA</td>
<td>Evaluating the effectiveness of policy, fisheries management tools and large-scale marine protected areas on wide-ranging sharks.</td>
<td>R.Pressy</td>
</tr>
<tr>
<td>Benjamin Cresswell</td>
<td>JCU</td>
<td>United Kingdom</td>
<td>The ecology of mesopredator fish in reef ecosystems: considerations for conservation and fisheries management.</td>
<td>G.Jones, M.McCormick, N.Harrison</td>
</tr>
<tr>
<td>Augustine Crosbie</td>
<td>JCU, MTQ</td>
<td>Australia</td>
<td>Integrating physiological and environmental drivers of depth zonation patterns on coral reefs.</td>
<td>A.Baird, T.Bridge</td>
</tr>
<tr>
<td>Amber Datta</td>
<td>JCU, U.Montana</td>
<td>USA</td>
<td>Untapped capacity for adaptation and transformation in coral-reef social-ecological systems: exploring governance and discourse in the Great Barrier Reef and Hawaiian Islands.</td>
<td>M.Barnes, T.Morrison</td>
</tr>
<tr>
<td>Daniel Raj David</td>
<td>UWA</td>
<td>India</td>
<td>The interaction of WECs in an array and its influence on coastal processes.</td>
<td>R.Lowe</td>
</tr>
<tr>
<td>Stephanie Di Perna</td>
<td>JCU, AIMS</td>
<td>Canada</td>
<td>Coastal acidification in the benthic boundary layer on inshore reefs: implications on water chemistry and benthic communities.</td>
<td>M.Hoogenboom</td>
</tr>
<tr>
<td>Beatriz Diaz-Guijar</td>
<td>JCU</td>
<td>Spain</td>
<td>A comparison of the regeneration stages with development stages of corals including those in the family Heliofungia.</td>
<td>D.Miller, A.Moya</td>
</tr>
<tr>
<td>Andreas Dietzel</td>
<td>JCU</td>
<td>Germany</td>
<td>Primary habitat requirements of key herbivorous fish and stress-tolerant coral species in the Great Barrier Reef: which ecological factors govern their distribution and how to draw lessons for coral reefs?</td>
<td>T.Hughes, S.Cronolly</td>
</tr>
<tr>
<td>Adam Downie</td>
<td>JCU</td>
<td>Canada</td>
<td>How do coral reef fish develop into athletes?</td>
<td>J.Rummer, P.Cowan</td>
</tr>
<tr>
<td>Ameer Ebrahim</td>
<td>UQ, USC</td>
<td>Seychelles</td>
<td>The role of reef fish in a marine environment, and their contribution towards the resilience of tropical coral reefs.</td>
<td>P.Mumbly</td>
</tr>
<tr>
<td>Estefania Erazo Mera</td>
<td>JCU</td>
<td>Ecuador</td>
<td>Assessing cumulative impacts of land use in the wet tropics catchments on the Great Barrier Reef: remote sensing and Bayesian modelling for a new conservation planning scheme.</td>
<td>B.Pressy, A.Grech</td>
</tr>
<tr>
<td>Nicolas Everman</td>
<td>UQ, CQRI</td>
<td>United Kingdom</td>
<td>Bottlenecks of coral recovery on degraded reefs. (PhD awarded)</td>
<td>P.Mumbly, YM Bozec</td>
</tr>
<tr>
<td>Leguna Fingerhut</td>
<td>JCU</td>
<td>Netherlands</td>
<td>Genome wide detection and evolutionary analysis of antifungal peptide repertoires in corals.</td>
<td>D.Miller</td>
</tr>
<tr>
<td>Fileri Firmansyah</td>
<td>UQ</td>
<td>Indonesia</td>
<td>Optimising fisheries management tools implementation to sustain tropical reef fisheries.</td>
<td>P.Mumbly</td>
</tr>
<tr>
<td>Eric Fisher</td>
<td>JCU, AIMS</td>
<td>Australia</td>
<td>Spawning aggregation sites on tropical reefs.</td>
<td>R.Lowe</td>
</tr>
<tr>
<td>Renan Fonseca da Silva</td>
<td>UWA</td>
<td>Brazil</td>
<td>Understanding and predicting the impact of submerged structures on coastal processes with application to wave energy converters.</td>
<td>R.Lowe</td>
</tr>
<tr>
<td>Kerrie Fraser</td>
<td>UQ, JCU</td>
<td>Australia</td>
<td>Marine protected areas; evaluating policy efficacy and impact in conserving biodiversity. (PhD awarded)</td>
<td>J.Pandolfi, R.Pressy</td>
</tr>
<tr>
<td>Gemma Gallabratx</td>
<td>JCU</td>
<td>United Kingdom</td>
<td>Submerged pinnacle coral reefs; reef fish ecology and functional connectivity.</td>
<td>G.Jones, M.McCormick</td>
</tr>
<tr>
<td>Justin Geldard</td>
<td>UWA</td>
<td>Australia</td>
<td>Impact of surface wave hydrodynamics on coral reef structures.</td>
<td>R.Lowe</td>
</tr>
</tbody>
</table>

ANNUAL REPORT 2019
<table>
<thead>
<tr>
<th>Student Name</th>
<th>University</th>
<th>Country</th>
<th>Thesis Title</th>
<th>ARC Centre Advisors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tania Kenyon</td>
<td>UQ</td>
<td>Australia</td>
<td>Physical and biological dynamics of post-disturbance coral reef rubble fields.</td>
<td>P Munday, S Dove</td>
</tr>
<tr>
<td>Catherine Kim</td>
<td>UQ</td>
<td>USA</td>
<td>Determining drivers of benthic composition, marine biodiversity, and coral health in Timor-Leste. (PhD awarded)</td>
<td>O Hoegh-Guldberg, S Dove</td>
</tr>
<tr>
<td>Sun Kim</td>
<td>UQ</td>
<td>South Korea</td>
<td>Evolution and ecology of coral range dynamics. (PhD awarded)</td>
<td>J Pandolfi</td>
</tr>
<tr>
<td>Felicity Kuai</td>
<td>JCU, AIMS</td>
<td>Malaysia</td>
<td>Dimethylsulfinopropionate (DMSP) metabolism within the coral holobiont.</td>
<td>D Miller, A Moya</td>
</tr>
<tr>
<td>Bethan Lang</td>
<td>JCU</td>
<td>United Kingdom</td>
<td>The effect of ocean warming on the behavior and fitness of post-settlement crown-of-thorns starfish (Acanthaster of solutes).</td>
<td>M Pratchett, A Hoey</td>
</tr>
<tr>
<td>Marie Lapointe</td>
<td>JCU</td>
<td>Canada</td>
<td>Understanding ecosystem service preferences and wellbeing benefits along a rural-urban gradient.</td>
<td>G Cumming, G Gurney</td>
</tr>
<tr>
<td>Jacqueline Lau</td>
<td>JCU, U.Lancaster</td>
<td>Australia</td>
<td>‘The Reef is our Gardener’: expanding analysis of ecosystem services in coastal communities. (PhD awarded)</td>
<td>J Cinzer, G Gurney</td>
</tr>
<tr>
<td>Taryn Laubenstein</td>
<td>JCU</td>
<td>USA</td>
<td>Relationships between behavioural and physiological performance under elevated CO2 in marine fishes. (PhD awarded)</td>
<td>P Munday, J Rrummer</td>
</tr>
<tr>
<td>Sarah Lawless</td>
<td>JCU, WorldFish</td>
<td>Australia</td>
<td>The diffusion of meta-norms in natural resource governance.</td>
<td>T Morrison, P Cohen, A Song</td>
</tr>
<tr>
<td>Zoe Luffier</td>
<td>JCU</td>
<td>Australia</td>
<td>The persistence of Sargassum communities on coral reefs resilience and herbivory. (PhD awarded)</td>
<td>A Hoey, M Pratchett</td>
</tr>
<tr>
<td>Jake Lowe</td>
<td>JCU</td>
<td>Australia</td>
<td>Effects of no-take marine reserve protection on abundance and demographics of tropical wraaseas.</td>
<td>G Russ</td>
</tr>
<tr>
<td>Charity MacDonald</td>
<td>JCU, MTQ</td>
<td>New Zealand</td>
<td>Depth as refuge: depth gradients in ecological pattern, process, and risk mitigation among coral reef fishes. (PhD awarded)</td>
<td>G Jones, T Bridge</td>
</tr>
<tr>
<td>Eva Maire</td>
<td>JCU, U.Montpellier</td>
<td>France</td>
<td>Socio-ecological drivers of fish biomass on coral reefs: The importance of accessibility, protection and key species. (PhD awarded)</td>
<td>J Cinzer, A Hoey</td>
</tr>
<tr>
<td>Samuel Matthews</td>
<td>JCU, AIMS</td>
<td>Australia</td>
<td>Modeling tools for the management of crown-of-thorns starfish (Acanthaster of solutes) outbreaks on Australia's Great Barrier Reef. (PhD awarded)</td>
<td>M Pratchett, V Messmer</td>
</tr>
<tr>
<td>Emmanuel Mbaru (ph1)</td>
<td>JCU, U.Lancaster</td>
<td>Kenya</td>
<td>Diffusion of a gear-based conservation innovation: adoption patterns and social-ecological outcomes. (PhD awarded)</td>
<td>J Cinzer, T Morrison, M Barnes</td>
</tr>
<tr>
<td>Eva McClure</td>
<td>JCU</td>
<td>Australia</td>
<td>No-take marine reserve performance under varying environmental and anthropogenic influences. (PhD awarded)</td>
<td>G Russ, A Hoey</td>
</tr>
<tr>
<td>Shannon McMahon</td>
<td>JCU</td>
<td>Australia</td>
<td>Effects of rising water temperature and food availability on predatory reef fish.</td>
<td>J Donelson, P Munday</td>
</tr>
<tr>
<td>Jennifer McWhorter</td>
<td>UQ, U.Exeter</td>
<td>United Kingdom</td>
<td>Coral reef futures under climate change and ocean acidification.</td>
<td>P Munday</td>
</tr>
<tr>
<td>Michael McWilliam</td>
<td>JCU</td>
<td>United Kingdom</td>
<td>The functional diversity and redundancy of corals. (PhD awarded Com Islo)</td>
<td>T Hughes, M Hogbinboom</td>
</tr>
<tr>
<td>Mathews Antonio Mello Alhayda</td>
<td>UQ</td>
<td>Brazil</td>
<td>Portunus ephippius (Dana, 1846), a resilient coral found on the Great Barrier Reef: present and future coral reef physiography.</td>
<td>S Dove</td>
</tr>
<tr>
<td>Michalis Mihalitsis</td>
<td>JCU</td>
<td>Greece</td>
<td>Predator-prey interactions in coral reef fishes: ecology and function.</td>
<td>D Bellwood, S Connolly</td>
</tr>
<tr>
<td>Rebecca Millington</td>
<td>UQ, U.Exeter</td>
<td>United Kingdom</td>
<td>Modeling the role of biodiversity in ecosystem resilience to climate change.</td>
<td>P Munday</td>
</tr>
<tr>
<td>Meira Motaishi</td>
<td>JCU</td>
<td>Australia</td>
<td>Maximizing potential impact of marine protected area (MPA) placement: an integrated socio-economic perspective.</td>
<td>R Pressley</td>
</tr>
<tr>
<td>Jose Montalvo Pisaon</td>
<td>JCU, AIMS</td>
<td>Ecuador</td>
<td>Mechanisms involved in the potential acclimation of corals to future environmental conditions.</td>
<td>P Munday</td>
</tr>
<tr>
<td>Renato Morais Araujo</td>
<td>JCU</td>
<td>Brazil</td>
<td>Habitat effects on coral reef fish growth and biomass production.</td>
<td>D Bellwood, S Connolly</td>
</tr>
<tr>
<td>Katie Motson</td>
<td>JCU</td>
<td>United Kingdom</td>
<td>The impacts of coral reef health on fish-parasite interactions.</td>
<td>A Hoey</td>
</tr>
<tr>
<td>Pauline Narvaez</td>
<td>JCU</td>
<td>Canada</td>
<td>Food preferences of cleaner organisms and the impact of cleaning interactions on pathogen transmission.</td>
<td>M McCormick</td>
</tr>
<tr>
<td>Tiffany Nai</td>
<td>JCU</td>
<td>United Kingdom</td>
<td>Temperature preferences of tropical fishes and the influence of localistic and biotic factors.</td>
<td>A Hoey, M Pratchett</td>
</tr>
<tr>
<td>Sekondoko Ronnie Nega</td>
<td>JCU</td>
<td>Botswana</td>
<td>Territorial use rights in small-scale fisheries management and the role of collective governance for sustainable fisheries in Botswana.</td>
<td>T Morrison</td>
</tr>
<tr>
<td>Nery Contri Neto</td>
<td>UNA</td>
<td>Brazil</td>
<td>Field observations of sediment dynamics within coastal benthic ecosystems.</td>
<td>R Lowe</td>
</tr>
<tr>
<td>Samuel Payet</td>
<td>JCU</td>
<td>Australia</td>
<td>The role of hybridisation in the evolution of coral reef fishes.</td>
<td>H Harrison, G Jones, M Pratchett</td>
</tr>
<tr>
<td>Katie Peterson</td>
<td>JCU, QIT</td>
<td>USA</td>
<td>Ecological drivers of community stability in space and time.</td>
<td>T Hughes, S Connolly</td>
</tr>
<tr>
<td>Mark Priest</td>
<td>UQ, Palau, IRCC</td>
<td>United Kingdom</td>
<td>A multi-disciplinary approach to predictive management of coral reef fisheries.</td>
<td>P Munday</td>
</tr>
<tr>
<td>Abd Priyanto</td>
<td>UQ, MMAF, Indonesia</td>
<td>Indonesia</td>
<td>Marine spatial planning in Indonesian options for improved efficiency.</td>
<td>P Munday</td>
</tr>
<tr>
<td>Laura Puk</td>
<td>UQ</td>
<td>Germany</td>
<td>Population dynamics of the brown Mcorocila tophophoreus sp. and its control by herbivorous fish.</td>
<td>P Munday</td>
</tr>
<tr>
<td>Veronica Radice</td>
<td>UQ</td>
<td>USA</td>
<td>Trophic ecology and microbial communities of shallow and deep reef building corals of the Maldives, Indian Ocean. (PhD awarded)</td>
<td>D Hoegh-Guldberg, S Dove</td>
</tr>
<tr>
<td>Jeremy Raynal</td>
<td>JCU</td>
<td>USA</td>
<td>Assessing the potential for recreational fishing to contribute to conservation of coastal marine species and habitats.</td>
<td>R Pressey</td>
</tr>
<tr>
<td>Johan Risandi</td>
<td>UNA</td>
<td>Indonesia</td>
<td>Assessing the hydrodynamics and morphodynamics of a reef-fringed pocket beach.</td>
<td>R Lowe</td>
</tr>
<tr>
<td>Arnold van Roomen</td>
<td>UNA, Deltares</td>
<td>Netherlands</td>
<td>Wave-driven hydrodynamics in coastal canyons. (PhD awarded)</td>
<td>R Lowe</td>
</tr>
<tr>
<td>Cristina Ramon</td>
<td>JCU</td>
<td>Spain</td>
<td>Equity in fisheries co-management: socio-ecological determinants and trade-offs.</td>
<td>J Cinzer, G Gurney</td>
</tr>
<tr>
<td>Alfonso Ruiz Moreno</td>
<td>JCU</td>
<td>Spain</td>
<td>Spatial and temporal dynamics of reef fish diversity: community ecology and phylogenetics.</td>
<td>S Connolly, D Bellwood</td>
</tr>
<tr>
<td>Edmond Sacre</td>
<td>JCU</td>
<td>Australia</td>
<td>Developing spatial prioritisation strategies to maximise conservation impact. (PhD awarded)</td>
<td>R Pressey</td>
</tr>
<tr>
<td>Niketamari (Neta) Sagar</td>
<td>UNA</td>
<td>India</td>
<td>Reconstructing climate and anthropogenic signals on the Indian Ocean margins using geospatially steady calcifiers.</td>
<td>M McCulloch, S Adare, A Sadek</td>
</tr>
<tr>
<td>Ayse Defne Sahin</td>
<td>UNA</td>
<td>Turkey</td>
<td>Assessing the response of shallow water and deep-sea zoanthellae corals to climate change using geochemical proxies.</td>
<td>M McCulloch, V Schoepf, R Lowe</td>
</tr>
<tr>
<td>Katie Sambrook</td>
<td>JCU, CNRS</td>
<td>United Kingdom</td>
<td>Beyond the reef: the influence of seascapes structure on fish communities and ecological processes on reefs.</td>
<td>A Hoey, G Gurney</td>
</tr>
<tr>
<td>Joltei Schlaefer</td>
<td>JCU</td>
<td>Australia</td>
<td>Determining the population structures of cubozoan jellyfishes with biophysical modelling.</td>
<td>M Kingford</td>
</tr>
<tr>
<td>Molly Scott</td>
<td>JCU, AIMS</td>
<td>Australia</td>
<td>Spatial and temporal variation in movement patterns and behaviour of a large, coral reef mesopredator, Plectropomus leopardus, on the Great Barrier Reef. (PhD awarded)</td>
<td>M Pratchett</td>
</tr>
<tr>
<td>Student Name</td>
<td>University</td>
<td>Country</td>
<td>Thesis Title</td>
<td>ARC Centre Advisers</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td>---------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Katherine Severs</td>
<td>JCU</td>
<td>USA</td>
<td>The influence of multiple habitat types on no take marine reserve performance, fish community structure, and demographics of important fishery species.</td>
<td>G Ross, G Jones</td>
</tr>
<tr>
<td>Tiffany Shi</td>
<td>JCU, AMS</td>
<td>USA</td>
<td>Diving into the deep-end: investigating tropical deep-reef fish assemblages, (PhD awarded)</td>
<td>M Kingford</td>
</tr>
<tr>
<td>Carrie Sims</td>
<td>UQ</td>
<td>Australia</td>
<td>Community ecology of corals and their symbionts.</td>
<td>J Pandolfi</td>
</tr>
<tr>
<td>Alexandre Siqueira Correa</td>
<td>JCU</td>
<td>Brazil</td>
<td>Regulators of coral reef diversity through space and time.</td>
<td>P Cowman, D Bellwood</td>
</tr>
<tr>
<td>Patrick Smallhorn-West</td>
<td>JCU, MTQ</td>
<td>Canada</td>
<td>Efficacy of community-based marine management in the Kingdom of Tonga.</td>
<td>G Jones, T Bridge, B Pressey, G Gurney</td>
</tr>
<tr>
<td>Blake Spady</td>
<td>JCU, MTQ</td>
<td>USA</td>
<td>Effects of diel CO₂ cycles on the early development and behaviour of coral reef fishes under ocean acidification. (PhD awarded)</td>
<td>S-A Watson, P Munday, J Rummer</td>
</tr>
<tr>
<td>Jessica Spijkers</td>
<td>JCU, Stockholm</td>
<td>Sweden</td>
<td>The future for governing highly migratory straddling stocks: conflict or cooperation?</td>
<td>T Morrison, G Cumming</td>
</tr>
<tr>
<td>Rachel Sprin</td>
<td>JCU</td>
<td>Australia</td>
<td>Keeping up with climate change: the evolutionary potential of coral reef fishes to rising sea temperature.</td>
<td>P Munday, J Doneillon</td>
</tr>
<tr>
<td>Robert Street</td>
<td>JCU</td>
<td>Kenya</td>
<td>Spatial ecology and space use in browsing herbivorous reef fishes: ecological drivers and effects on ecosystem function.</td>
<td>D Bellwood, G Cumming</td>
</tr>
<tr>
<td>Sarah Sutcliffe</td>
<td>JCU, WorldFish</td>
<td>Australia</td>
<td>Macro and micro level determinants of the contribution of fish to nutritional security.</td>
<td>J Conner, M Barnes, A Song</td>
</tr>
<tr>
<td>Shahn Afzita Kamal Taruc</td>
<td>UQ</td>
<td>Indonesia</td>
<td>An assessment of the sustainability and resilience of livelihoods within an Indonesian marine socio-ecological system, (PhD awarded)</td>
<td>O Hoegh-Guldberg</td>
</tr>
<tr>
<td>Sterling Tebbet</td>
<td>JCU</td>
<td>Australia</td>
<td>The functioning of future coral reefs: fishes, sediments and productivity.</td>
<td>D Bellwood, S Connelly</td>
</tr>
<tr>
<td>Tuilia Iotta Terraneo</td>
<td>JCU, KAUST</td>
<td>Italy</td>
<td>Species boundaries in the coral genus Porites: an integrated approach.</td>
<td>A Baird, D Miller</td>
</tr>
<tr>
<td>Jodi Thomas</td>
<td>JCU</td>
<td>New Zealand</td>
<td>The neurobiological mechanisms through which ocean acidification affects invertebrate behaviour.</td>
<td>P Munday, S-A Watson</td>
</tr>
<tr>
<td>Damian Thomson</td>
<td>JCU</td>
<td>Australia</td>
<td>Resilience of coral assemblages in NW Australia.</td>
<td>A Hoey, M Pratchett</td>
</tr>
<tr>
<td>Cheng-Han Tai</td>
<td>JCU, AMS</td>
<td>Taiwan</td>
<td>The structure and dynamics of reef fish communities.</td>
<td>S Connolly, D Bellwood</td>
</tr>
<tr>
<td>Laura Velasquez Jimenez</td>
<td>JCU</td>
<td>Colombia</td>
<td>Effects of boat noise on parental contributions to the dynamics of coral reef fishes.</td>
<td>M McCormick, G Jones</td>
</tr>
<tr>
<td>Casey Whalen</td>
<td>JCU</td>
<td>USA</td>
<td>Coral mediation of associated microbial community.</td>
<td>D Miller, A Moya</td>
</tr>
<tr>
<td>Carolyn Wheeler</td>
<td>JCU, U. Mass</td>
<td>USA</td>
<td>Quantifying life history energetics of an oxygenous elasmobranch subject to future warming waters.</td>
<td>J Rummer</td>
</tr>
<tr>
<td>Adam Wilkinson</td>
<td>JCU</td>
<td>United Kingdom</td>
<td>The identification of potential links between fibropapilomatosis prevalence in green sea turtles (Chelonia mydas) and toxic metal contamination along the Great Barrier Reef, Australia.</td>
<td>J Brodie</td>
</tr>
<tr>
<td>Jessica Zamborain Mason</td>
<td>JCU</td>
<td>Spain</td>
<td>Towards the sustainability of coral reef fisheries: a functional approach.</td>
<td>S Connolly, J Conner</td>
</tr>
<tr>
<td>Jia Zhang</td>
<td>JCU</td>
<td>China</td>
<td>Genome wide analysis of natural selection in the mostly tolerant coral communities from North Western Australia.</td>
<td>D Miller</td>
</tr>
<tr>
<td>Kim Woller</td>
<td>JCU</td>
<td>South Africa</td>
<td>Understanding the production of cultural ecosystem services and benefits.</td>
<td>G Cumming, G Gurney</td>
</tr>
<tr>
<td>Karin Zweek</td>
<td>UQ</td>
<td>Netherlands</td>
<td>Using DNA to reconstruct past coral reef ecosystems.</td>
<td>J Pandolfi</td>
</tr>
</tbody>
</table>

GRADUATE PROFILE: EMMANUEL MBARU

Emmanuel Mbaru grew up in the coastal city of Mombasa, Kenya, where he spent his early life close to the ocean. It was natural therefore that his undergraduate studies were in Fisheries and Aquatic Sciences, at Moi University. As part of his undergraduate degree, he visited public and private institutions involved in research and management of water and fisheries resources in Kenya. It was because of these amazing field trips that he became passionate in pursuing a career in fisheries research.

After graduating, Mbaru was employed as a research associate in a World Bank-funded project to assess the sustainability of fisheries in the western Indian Ocean, and to build capacity among fisheries scientists in the region. Through this project, he received financial support for a MSc in Fisheries Science at Rhodes University, South Africa. Subsequently, he worked closely with local and international NGOs to develop local management of Kenya’s nearshore fisheries. This research was prompted by the introduction of increased management restrictions in Kenya, and the need to develop alternative fishing methods to ensure the sustainability of fisheries.

The connection between conservation and people’s livelihoods became a growing interest in Mbaru’s career, and one he wished to develop further.

Enrollment as a PhD student in the ARC Centre of Excellence for Coral Reef Studies changed Mbaru’s future direction as a fisheries scientist. Importantly, his thesis project was based on his experience studying the coastal fisheries in Kenya, and it examined how conservation interventions affect both people and the environment. He explored these issues by examining the introduction of the escape slot trap in coastal Kenya, an initiative to reduce fisheries bycatch (incidental take). This intervention was introduced with the explicit aim of protecting biodiversity, by harvesting fish species at sizes that ensure sustainability of the local fishery. The research drew on social science theories and breakthroughs in functional ecology research. Mbaru’s results affirmed the viability of the escape slot trap as a sound gear-based conservation innovation for coral reef fisheries.

Shortly after his return to Kenya, and following the submission of his thesis in Australia, Mbaru moved to a new national Mariculture and Fisheries Research Centre. There he is working to develop fisheries monitoring programmes, and to assist in the development of fisheries innovations in Kenya. His unique knowledge on conservation and fisheries management will help practitioners and resource managers to implement innovations and further influence fisheries practices in Kenya. Mbaru is currently running three projects that advance the work he did during his PhD. His approach has significance and wide appeal in many areas, such as, community development studies, participatory research, community intervention, and behaviour change. He is very excited about this opportunity to contribute to the management of marine resources in his home country.
“You easily feel helpless and overwhelmed”: What it’s like being a young person studying the Great Barrier Reef

by Angela Heathcote

It’s not unusual for a young PhD student studying the Great Barrier Reef to watch the coral they’d been observing for months bleach in just a single summer.

“We have to relearn how the system is now working,” he says. “It is a huge research challenge for the next generation of marine scientists.”

Many of my students have had to redesign their projects because their corals died, but I tell them to hang in there because there has never been a greater need for coral reef researchers.”

Queensland is the unofficial home of marine science in Australia given its proximity to institutions such as the Australian Institute for Marine Science and the Great Barrier Reef Marine Park Authority, and the Reef itself.

IN 2016, ONE of Australia’s most respected coral biologists Terry Hughes tweeted a graph depicting the extreme coral bleaching event that occurred on the Great Barrier Reef in 2016.

Alongside the graph, Terry wrote, “I showed the results of aerial surveys of #bleaching on the #GreatBarrierReef to my students. And then we wept.”

The northern parts of the Great Barrier Reef were the hardest hit, with 81 per cent considered “severely bleached”. The central third of the Great Barrier Reef suffered even more bleaching in 2017. This was the first ever recorded back-to-back bleaching event caused by global heating from CO2 emissions. In the November/December issue of Australian Geographic (on sale 7 November 2019), Terry further detailed the challenges faced by young coral reef scientists.

The ARC Centre of Excellence for Coral Reef Studies, headquartered at James Cook University in Townsville, is particularly distinguished in the field of marine science. We sat down with three ARC students to ask them what it’s like studying the Great Barrier Reef in the midst of the climate crisis.

Andreas Dietzel

Andreas began his PhD on the Great Barrier Reef in 2015, and following the bleaching events of 2016–2017, adapted the focus of his research to explore the consequences of the unprecedented event.

Alongside Terry Hughes, Andreas helped map the 2016 bleaching event in the northern Great Barrier Reef (the data was included on the map tweeted by Terry).

“My colleagues and I were just on our way back from two physically and mentally challenging weeks surveying the most severely bleached reefs in the far north, when we heard the news that Donald Trump had just been elected president of the USA,” Andreas says.

“A feeling of shock and disbelief mixed with the sobering realisation that the chances of averting further climate breakdown, whose impact on even the most remote parts of the Reef we had just witnessed, was quickly dwindling.

“When mass bleaching returned in 2017, the fear that climate change was already here now and not a distant, slowly unfolding threat, became stronger and has stayed with me ever since.”

While Andreas didn’t expect his PhD to be easy, it’s come with added stress.

“Feeling overwhelmed is a natural part of any PhD but witnessing and documenting an ecosystem as marvellous as the Great Barrier Reef degrade so significantly over the course of your own PhD comes with its own challenges,” Andreas says.

“The question I have often asked myself is how to make a difference as a PhD student or early-career scientist and significantly add to a body of knowledge that has too often fallen on deaf ears with politicians.

“Building the emotional resilience to not let your professional life impact your private life too much is particularly challenging when you are not only trying to be part of the solution but your Western lifestyle also makes you part of the problem.”

The biggest challenge for young marine scientists, Andreas foresees, is factoring in the possibility of disturbances affecting their research projects, such as loss of coral.

“Having a back-up plan and being able to adjust your goals and methods quickly will be essential.

“As disturbances become more frequent and larger, reefs and reef dynamics will resemble their historic counterparts less and less.

“On one of my first trips to the GBR, we surveyed a breathtaking reef. Back at the surface I shared my excitement with my colleagues, who were quick to note that most reefs used to look like this or better.

“The baseline of what a pristine reef should look like has and will continue to shift as reefs continue to degrade.”

Alexia Graba-Landry

In total, Alexia has spent over 600 field-work days on the Great Barrier Reef for both her PhD research and related projects.

Alexia’s PhD investigates the influence of temperature on fish-algae interactions on coral reefs.

“This is important because by eating the algae, the fish keep the algae in a cropped state, and make space for corals to settle and grow,” Alexia explains.

“Understanding how this important process might change as oceans continue to heat up can give us an idea of what reefs might look like into the future.”

Alexia’s thorough knowledge of the Great Barrier Reef gave her the opportunity to work as a camera assistant.
and dive supervisor for the BBC’s Blue Planet 2 program.

But the long amount of time she’s spent on the Reef has opened her eyes to the immense pressure its under.

“Studying climate change and the Great Barrier Reef can sometimes be overwhelming, particularly when the results of your studies confirm just how vulnerable coral reefs are to climate change.

“Coral reefs are one of the most threatened ecosystems, and during my short time researching the reef, I have witnessed the devastating effects of recurrent cyclones, and recurrent coral bleaching events, and widespread coral mortality.”

Alexia was a part of surveys that quantified the coral loss of the northern parts of the Great Barrier Reef, where she’d already witnessed the impacts of cyclones Nathan and Ilu years before.

“I think a big challenge for young people studying the Reef is that they will never get to see it as it was.

“I don’t think any of us will ever get to fully comprehend what a pristine reef looks like, or that it was right in our backyards.

“Our reefs will be different to the generations before us: lower in biodiversity and complexity.”

Madeline Davey

Madeline is currently undertaking a PhD in marine spatial planning at the University of Queensland that she hopes will inform robust conservation plans for the Great Barrier Reef, and coral reefs around the world.

For Madeline, the biggest challenges for young marine scientists is facing the reality that much of your research will be ignored, as well as reading media reports that misrepresent the current trajectory of the Great Barrier Reef.

The 2016–2017 bleaching event left Madeline feeling sad, but mostly defeated.

“With catastrophic events like this, it is incredibly hard to be optimistic about the future, but as a coral reef scientist, I think it’s a part of my role to motivate citizens to stay informed and engaged,” Madeline says.

“It is really challenging to navigate the media reports and persistent questions about whether the reef is ‘really’ dead. It is incredibly hard to give decisive answers about an uncertain future when we don’t know ourselves, and so much depends on whether or not people take action.

“It’s also especially hard to keep studying and working in coral reef conservation when it often feels like all this hard work and research is ignored by those who have power to make the changes we need to see to ensure the Reef retains its wonder and global importance.”

Madeline says, however, that she personally witnessed how the back-to-back bleaching event got Australians more concerned about the science of climate change.

“I’ve been a CoralWatch ambassador since 2017, which gave me good insight into the number of concerned citizens who wanted to know more about what coral bleaching is, and what they can do to help prevent further devastation to our reef.”

The biggest challenge for young marine scientists, Madeline says, is centred on innovation, specifically the question, “how can we assist in rapid recovery of coral reef ecosystems?”

In 2019, the Centre provided training and mentoring to 170 graduate students, 124 of whom came from 36 overseas countries.
The ARC Centre of Excellence is a global hub for multidisciplinary coral reef research. Collaborations associated with our research continue to grow. They are exemplified by the number of cross-institutional publications, the countries in which we undertake fieldwork, the workshops and working group meetings we convene, and the number of international visitors we host annually. The Centre’s research profile and reputation has attracted 198 international graduate students since 2014 (p42), including 26 new graduate enrolments from 14 countries in 2019.

In 2019, ARC Centre researchers published 313 journal articles with cross-institutional co-authorship, involving collaborators from 445 institutions in 69 countries. Centre researchers convened 23 international working groups and workshops, involving >300 external researchers and stakeholders. Across the four nodes of the ARC Centre, we hosted 79 international visitors from 25 countries during the year.

Our fieldwork was conducted in 28 countries in 2019, and the resulting outputs, media uptake, public outreach and impact is global (p62). The ARC Centre’s researchers are major contributors to intergovernmental organisations such as the Intergovernmental Panel on Climate Change (IPCC), the World Bank, UNESCO, Programme on Ecosystem Change and Society (PECS), and the International Council for Science (ICSU). Centre personnel are also appointed to many editorial boards of international journals. Five Centre research leaders are Fellows of the Australian Academy of Science: David Bellwood, Ove Hoegh-Guldberg, Terry Hughes, Malcolm McCulloch and Bob Pressey. Malcolm McCulloch is also a Fellow of The Royal Society (UK).

In addition to our partnership with the Australian Institute of Marine Science, and the Great Barrier Reef Marine Park, the ARC Centre has formal international partnership agreements with the Center National de la Recherche Scientifique (CNRS), France’s Centre National de la Recherche Scientifique (CNRS), France

The Australian Institute of Marine Science (AIMS) is the ARC Centre’s major Australian research partner outside of the University sector. AIMS undertakes a range of research on tropical marine environments and aquaculture and is responsible for the long-term monitoring of the Great Barrier Reef. AIMS increasingly provides research services to industry, including oil and gas companies, government agencies, port authorities and other clients and partners, particularly in Queensland, Western Australia and the Northern Territory. Dr Paul Hardisty, the AIMS Chief Executive Officer, is a member of the Centre’s Advisory Board while AIMS’ senior principal research scientist, Janice Lough is a very active Partner Investigator in the Centre. AIMS and the ARC Centre share valuable infrastructure, co-supervise graduate students (18 in 2019) and co-fund two postdoctoral fellows: Hugo Harrison who was appointed in 2019, and Kristen Anderson. AIMS and ARC Centre researchers co-authored 50 journal articles in 2019, focussing mainly on research on the Great Barrier Reef and on reefs in Western Australia.

Centre National de la Recherche Scientifique (CNRS), France

The Centre National de la Recherche Scientifique (CNRS) is France’s major research organisation. CNRS conducts a globally-significant program of coral reef research, centred on field laboratories and other research facilities in French Polynesia, New Caledonia, the Indian Ocean and the Caribbean. The ARC Centre’s partnership with CNRS is led by Partner Investigator Professor Serge Planes. In 2019, CNRS collaborations with the ARC Centre generated 44 journal articles, with 95 French co-authorships. For example, Geoff Jones, Serge Planes and others generated significant and global media attention on an Ecology Letters publication which reported that the reproductive success of the clownfish depends almost entirely on having a high-quality anemone home. Joshua Cinner’s collaboration with David Mouillot at the University of Montpellier has also generated a number of high profile publications, including in 2019, in Nature Ecology and Evolution and Scientific Advances. David is a frequent visitor to the JCU node of the Centre, and he identifies the Centre of Excellence as his secondary affiliation as a Highly Cited Researcher. Jodie Rummer also works closely with Serge Planes on a shark research program at the Centre de Recherche Insulaire et Observatoire de l’Environnement (CRIOBE), a research centre supported by the CNRS in French Polynesia. ARC Centre PhD students, Ian Bouyoucos, Victor Huertes Martin and Katie Sambrook are co-supervised by CNRS researchers. Ian and Victor have been undertaking studies to understand the capacity for newborn sharks in French Polynesia to acclimate and adapt to climate change conditions. In December, Jodie held a workshop at CRIOBE for 12 French and Polynesian Masters students, on the conservation and physiology of sharks.

Great Barrier Reef Marine Park Authority

The Great Barrier Reef Marine Park Authority (GBRMPA), the Australian government agency with the primary responsibility of protecting and managing the Great Barrier Reef, is the ARC Centre’s most important end-user in Australia. GBRMPA’s role is to assess, inform, and implement government policies to maintain the environmental quality of the Great Barrier Reef. The ARC Centre’s research goals are strongly aligned with the scientific information needs of GBRMPA. Consequently, GBRMPA’s partnership with the ARC Centre provides them with direct access to the ARC Centre’s expertise and advice. GBRMPA is embedded within the ARC Centre’s governance structure (p66), to facilitate research planning and the exchange of information and data. In 2019, GBRMPA’s newly appointed Chief Executive Officer, Josh Thomas joined the Centre’s Advisory Board, and the Authority’s Chief Scientist, Dr David Wachenfield, is a member of the Centre’s Scientific Management Committee. GBRMPA managers receive regular updates, advice and briefings on the Reef from ARC Centre researchers. For example, in 2019, Josh Thomas met repeatedly with Centre researchers to discuss our current research within the Great Barrier Reef Marine Park, and pathways for the uptake of research into management. In August, GBRMPA and the Centre co-hosted an inaugural ‘speed-networking’ event attended by 40 participants from the two organisations, to facilitate linkages, research updates and management priorities. Terry Hughes was appointed by the Commonwealth
government to review the 2019 Great Barrier Reef (GBR) Outlook Report. Produced every five years, the Outlook Report is an assessment of the GBR and its future. It forms part of Australia’s State Party reports to UNESCO on the status of World Heritage properties. Ove Hoegh-Guldberg and Terry Hughes are members of the Independent Expert Panel which provides expert advice to GBRMPA, and the Queensland and Federal governments on the Great Barrier Reef. In October Terry Hughes, David Wachenfeld and Ian Chubb provided a briefing to the Australian Government on the science of climate change for the Great Barrier Reef. An additional briefing on this topic was provided to the Honourable Sussan Ley, Minister for the Environment. Peter Mumby, Karl Hock, George Roff and Yves-Marie Bozec (p24) are working with GBRMPA managers to develop a ‘resilient reef dataset’ to inform crown-of-thorns starfish control. During 2019, Centre researchers David Williamson, Garry Russ and Geoff Jones continued to deliver findings to GBRMPA on their assessment of the ecological effects of fishing on inshore reefs of the GBR. In November, Centre researchers Scott Heron, Janice Lough and others joined GBRMPA managers for presentations, information exchange and discussions in GBRMPA’s Pre-Summer Reef Health Workshop, a forum for planning and coordinating upcoming monitoring and research activities.

Queensland Museum

The Museum of Tropical Queensland, in Townsville, is one of five museums in the Queensland Museum Network. The Museum is internationally renowned for its marine biological collections, and it houses the world’s largest and most significant collection of reef corals. The collection is an invaluable resource for understanding the diversity and evolutionary history of corals and coral reefs, as well as for quantifying the magnitude of changes to coral reef systems in the Anthropocene. Museums are increasingly recognised as holding a key role for both documenting and conserving biodiversity, and also in communicating to the broader public. The ARC Centre has strengthened its linkages to the Museum by co-appointments of two researchers: Tom Bridge and Ian Chubb provided a briefing to the Australian Government on the science of climate change for the Great Barrier Reef. An additional briefing on this topic was provided to the Honourable Sussan Ley, Minister for the Environment. Peter Mumby, Karl Hock, George Roff and Yves-Marie Bozec (p24) are working with GBRMPA managers to develop a ‘resilient reef dataset’ to inform crown-of-thorns starfish control. During 2019, Centre researchers David Williamson, Garry Russ and Geoff Jones continued to deliver findings to GBRMPA on their assessment of the ecological effects of fishing on inshore reefs of the GBR. In November, Centre researchers Scott Heron, Janice Lough and others joined GBRMPA managers for presentations, information exchange and discussions in GBRMPA’s Pre-Summer Reef Health Workshop, a forum for planning and coordinating upcoming monitoring and research activities.

WorldFish, Malaysia

WorldFish is an international non-profit scientific agency headquartered in Malaysia, undertaking research projects in Africa, Asia and the Pacific. It has a global staff of about 330, permanent offices in seven countries, and ongoing projects in 25 countries. Its objective is to improve food and nutrition security and to reduce poverty for the 800 million people globally who depend on fisheries and aquaculture. The ARC Centre and WorldFish share a common research interest in the dynamics and sustainable interaction between human societies and coral reef-associated fisheries. WorldFish and the ARC Centre have a strong ongoing and productive partnership, which in 2019 generated 22 co-authored publications – comprising 16 journal articles, 4 book chapters and 2 reports. Joshua Cinner led a high-profile paper in PNAS which presented a 16-year analysis of ecological outcomes and perceived livelihood impacts from coral reef management initiatives in Papua New Guinea. During 2019, the WorldFish collaboration was further strengthened by the appointment of small-scale fisheries expert Dr Jacqueline Lau. Jacqueline joins Danika Kleiber and Andrew Song as co-founded research fellows, and David Mills, a WorldFish senior scientist, based at the JCU node of the Centre. As part of the WorldFish collaboration, Jennifer Lappin and Tiffany Morrison attended the international FISH CRP management committee meetings in Myanmar and Penang, respectively. Jacqueline Lau presented her research at the 5th Global Science Conference on Climate-Smart Agriculture, in Bali. She also attended the Regional workshop for the development of an integrated livelihoods approach for Pacific Island small-scale fishing communities, co-hosted by the ARC Centre and WorldFish on Magnetic Island, in November. Also in November, joint Centre/WorldFish research fellow Danika Kleiber (p16) hosted the WorldFish Gender team meeting, at the ARC Centre at JCU. Danika also delivered the capacity building webinar Gender Equity and Equality in the Small-Scale Fisheries Guidelines in April 2019. PhD students Sarah Lawless, Sarah Sutcliffe and Ruby Grantham, who are jointly supervised by Centre and WorldFish researchers, benefited hugely from participation in these activities. In recognition of the strength of the Centre’s relationship with WorldFish, Pip Cohen was appointed to the Centre’s Advisory Board in 2019. Pip is Research Leader of the Global Program on Resilient Small-Scale Fisheries, at WorldFish. The Centre’s ongoing collaboration with WorldFish creates strong links to end-users, including local communities, many inter-governmental organisations and NGOs, and to the governments of many developing countries, particularly in the Coral Triangle region.

International visitors to the Centre in 2019

In 2019, the ARC Centre of Excellence hosted 79 visitors from 25 countries at its four nodes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Overseas Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Dominic Andradi-Brown</td>
<td>World Wildlife Fund</td>
<td>United States</td>
</tr>
<tr>
<td>Cheleay Berea</td>
<td>Victoria University of Wellington</td>
<td>New Zealand</td>
</tr>
<tr>
<td>Dr Francesca Berzon</td>
<td>King Abdulaziz University of Science and Technology</td>
<td>Saudi Arabia</td>
</tr>
<tr>
<td>Prof Debabish Bhattacharya</td>
<td>Rutgers University</td>
<td>United States</td>
</tr>
<tr>
<td>Dr Ben Bohor</td>
<td>McMaster University</td>
<td>Canada</td>
</tr>
<tr>
<td>Dr Jamie Caldwell</td>
<td>Stanford University</td>
<td>United States</td>
</tr>
<tr>
<td>Dr Alima Choudhury</td>
<td>WorldFish</td>
<td>India</td>
</tr>
<tr>
<td>Dr Pip Cohen</td>
<td>WorldFish</td>
<td>Malaysia</td>
</tr>
<tr>
<td>Dr Amber Dance</td>
<td>Nature Magazine</td>
<td>United States</td>
</tr>
<tr>
<td>Dr Emily Darling</td>
<td>Wildlife Conservation Society</td>
<td>United States</td>
</tr>
<tr>
<td>Prof Rob DeSalle</td>
<td>American Museum of Natural History</td>
<td>United States</td>
</tr>
<tr>
<td>Dr Michelle Devin</td>
<td>Centre for Environment Fisheries and Aquaculture Science</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Adele Dixon</td>
<td>University of Leeds</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Luiz Dos Santos Ribas</td>
<td>Universidade Federal de Goiás Goiânia</td>
<td>Brazil</td>
</tr>
<tr>
<td>Sarah Erickson</td>
<td>University of California Davis</td>
<td>United States</td>
</tr>
<tr>
<td>Prof Francine Filho</td>
<td>Universidade Federal da Paraíba</td>
<td>Brazil</td>
</tr>
<tr>
<td>Prof Massimo Fine</td>
<td>Interuniversity Institute for Marine Sciences</td>
<td>Israel</td>
</tr>
<tr>
<td>Prof Amazita Ganin</td>
<td>Interuniversity Institute for Marine Sciences</td>
<td>Israel</td>
</tr>
<tr>
<td>Justin Gilligan</td>
<td>National Geographic</td>
<td>United States</td>
</tr>
<tr>
<td>Dr Chelsia Gomene</td>
<td>WorldFish</td>
<td>Malaysia</td>
</tr>
<tr>
<td>Dr Paul Halpern</td>
<td>University of Exeter</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Prof Ben Halpern</td>
<td>NCEAS and University of California, Santa Barbara</td>
<td>United States</td>
</tr>
<tr>
<td>Farsid Huque</td>
<td>WorldFish</td>
<td>India</td>
</tr>
<tr>
<td>Dr Saki Haris</td>
<td>University of Ryukyu</td>
<td>Japan</td>
</tr>
<tr>
<td>Zinat Haseba</td>
<td>WorldFish</td>
<td>India</td>
</tr>
<tr>
<td>Prof Jim Haywood</td>
<td>University of Exeter</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Dr Tessa Hempson</td>
<td>Oceans without Borders</td>
<td>South Africa</td>
</tr>
<tr>
<td>Dr Misasa Hettiarachchi</td>
<td>WWF International</td>
<td>United States</td>
</tr>
<tr>
<td>Dr Jules Jaffe</td>
<td>University of California, San Diego</td>
<td>United States</td>
</tr>
<tr>
<td>Prof Michel Kowalewski</td>
<td>Florida Museum of Natural History and the University of Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Philip Kuhel</td>
<td>Columbia University</td>
<td>United States</td>
</tr>
<tr>
<td>Liam Lachs</td>
<td>University of Leeds</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Dr Jonathan Lambrechts</td>
<td>University of Belgium</td>
<td>Belgium</td>
</tr>
<tr>
<td>Dr Sanmie Leferve</td>
<td>University of Oslo</td>
<td>Norway</td>
</tr>
<tr>
<td>Bruce Lendon</td>
<td>Australian High Commissioner to the Caribbean</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>Jonathan Levine</td>
<td>Princeton University</td>
<td>United States</td>
</tr>
<tr>
<td>Prof Don Leahtan</td>
<td>Florida State University</td>
<td>United States</td>
</tr>
<tr>
<td>Prof Oren Levy</td>
<td>Ben-Gurion University</td>
<td>Israel</td>
</tr>
<tr>
<td>Timothy Lewis</td>
<td>Columbia University</td>
<td>United States</td>
</tr>
<tr>
<td>Name</td>
<td>Overseas institution</td>
<td>Country</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>Neil Maginnis</td>
<td>University of Denmark</td>
<td>Denmark</td>
</tr>
<tr>
<td>Dr Sangeeta Mangubhai</td>
<td>Wildlife Conservation Society</td>
<td>Fiji</td>
</tr>
<tr>
<td>Dr Laurence McCook</td>
<td>South China Sea Institute of Oceanology</td>
<td>China</td>
</tr>
<tr>
<td>Dr Cynthia McDougall</td>
<td>WorldFish</td>
<td>Malaysia</td>
</tr>
<tr>
<td>Julia McDowell</td>
<td>Université de Montpellier</td>
<td>France</td>
</tr>
<tr>
<td>Joshua Modeste</td>
<td>Columbia University</td>
<td>United States</td>
</tr>
<tr>
<td>Prof David Moullot</td>
<td>Université de Montpellier</td>
<td>France</td>
</tr>
<tr>
<td>Prof Ryan Mulligan</td>
<td>Queen’s University</td>
<td>Canada</td>
</tr>
<tr>
<td>Dr Julie Newton</td>
<td>WorldFish</td>
<td>Malaysia</td>
</tr>
<tr>
<td>Prof Goran Nibson</td>
<td>University of Oslo</td>
<td>Norway</td>
</tr>
<tr>
<td>Dr Steven Palmer</td>
<td>University of Exeter</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Bruna Pereira Luz</td>
<td>Universidade Federal do Paraná</td>
<td>Brazil</td>
</tr>
<tr>
<td>Prof Serge Planes</td>
<td>Centre de Recherches Insulaire et Observatoire de l’Environnement (CNRS)</td>
<td>France</td>
</tr>
<tr>
<td>Dr Surendran Rajaratnam</td>
<td>WorldFish</td>
<td>Malaysia</td>
</tr>
<tr>
<td>Prof Matt Redenbach</td>
<td>University of Virginia</td>
<td>United States</td>
</tr>
<tr>
<td>Dr Alf Ring Kielen</td>
<td>Institute of Marine Research</td>
<td>Norway</td>
</tr>
<tr>
<td>Giovanni Sabini-Leite</td>
<td>Smith College</td>
<td>United States</td>
</tr>
<tr>
<td>Antoine Saint Amand</td>
<td>Université Catholique de Louvain</td>
<td>Belgium</td>
</tr>
<tr>
<td>Diego Salguero Önera</td>
<td>University of Barcelona</td>
<td>Spain</td>
</tr>
<tr>
<td>Julie Schlegel</td>
<td>University of Paris</td>
<td>France</td>
</tr>
<tr>
<td>Dr Molly Scott</td>
<td>University of Hawaii</td>
<td>United States</td>
</tr>
<tr>
<td>Lydia Shyda</td>
<td>School for International Training</td>
<td>United States</td>
</tr>
<tr>
<td>Prof Brian Silliman</td>
<td>Duke University</td>
<td>United States</td>
</tr>
<tr>
<td>Gideon Singer</td>
<td>Punjab University</td>
<td>United States</td>
</tr>
<tr>
<td>Dr Fred Strmger</td>
<td>University of Ryukyus</td>
<td>Japan</td>
</tr>
<tr>
<td>Prof Simon Sprecher</td>
<td>University of Fribourg</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Dr Yusuke Sudo</td>
<td>Okinawa Prefectural Fisheries and Ocean Research Center</td>
<td>Japan</td>
</tr>
<tr>
<td>Dr Ruth Thurstan</td>
<td>University of Exeter</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Dr Ap van Dongeren</td>
<td>Deltares</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Clara Vie</td>
<td>University of Strasbourg</td>
<td>France</td>
</tr>
<tr>
<td>Prof Stephan von Cramon-Taubadel</td>
<td>University of Gottingen</td>
<td>Germany</td>
</tr>
<tr>
<td>Prof Christian Voolstra</td>
<td>University of Konstanz</td>
<td>Germany</td>
</tr>
<tr>
<td>Dr Arthur Webb</td>
<td>United Nations Development Program</td>
<td>Fiji</td>
</tr>
<tr>
<td>Prof Kerstin Wiegand</td>
<td>University of Gottingen</td>
<td>Germany</td>
</tr>
<tr>
<td>Dr Syafuddin Yusuf</td>
<td>Hasanuddin University</td>
<td>Indonesia</td>
</tr>
<tr>
<td>Dr Mikolaj Zapalski</td>
<td>University of Warsaw</td>
<td>Poland</td>
</tr>
<tr>
<td>Dr Fernando Zapata</td>
<td>Universidad del Valle</td>
<td>Colombia</td>
</tr>
</tbody>
</table>

Crab in a forest of Black Sun Coral (Tubastrea) taken by PhD student Tania Kenyon on a night dive to the Tamandai wreck, Ihuru Island, Maldives, towards the end of a field trip.
COMMUNICATIONS, MEDIA AND PUBLIC OUTREACH

The ARC Centre has a highly successful strategy for communicating research findings to a diverse audience. For example, the Centre’s communications program actively promotes research outcomes through traditional and digital platforms. The Centre’s comprehensive website recorded 11.8 million hits in 2019. The Centre’s weekly multi-modal seminar series, which is publicly accessible through the Centre’s YouTube channel, hosted 31 online presentations during 2019. Other presentations include a Women in Science video of early career researcher Natalla Andrade Rodriguez, which was featured on the UNESCO website for World Oceans Day.

The ARC Centre’s annual Coral Reef Futures Symposium and Public Forum were highly successful events, fostering collaborations and collegiality amongst internal and external stakeholders. The two-day symposium was held this year in Sydney, at the Australian National Maritime Museum. The sold-out Public Forum What Every Australian Should Know about Climate Change was hosted by popular social media commentator, Tanya Ha, and featured a panel of four climate change experts: Joëlle Gergis (ANU), Lesley Hughes (Macquarie University), Simon Holmes à Court (Climate Energy Council) and the Centre’s Director, Terry Hughes. The Centre crowd-sourced the most popular questions for the Public Forum’s panel, from the audience and from participants watching the event as it livestreamed on Facebook live.

Social Media

During 2019, the Centre’s digital engagement continued to expand rapidly. The number of followers of the Centre’s Twitter account @CoralCoE grew to over 9,100. Followers from over ten countries registered more than 1 million impressions (including over 1,600 retweets and 3,600 likes) in Twitter feeds over the year. The Centre’s Twitter account was named as one of the top social media accounts of ARC-funded research groups in 2019 by the Director of Innovation at Digital Science. The annual Coral Reef Futures Symposium and Public Forum featured a targeted Twitter campaign, resulting in the event hashtag #coral2019 trending in Australia throughout the entire event.

The ARC Centre’s Facebook page, also grew in 2019 receiving over 1,500 total ‘Page Likes’. Expanding the Centre’s video library and online presence was a priority this year, resulting in our YouTube Channel garnering over 1,100 hours of total watch time. Centre researchers also actively participated in hundreds of international documentaries, TV shows, as well as News and Radio interviews.

FOLLOWER DEMOGRAPHICS

- Twitter 9.1K
- Facebook 3.1K
- Instagram 26K

Briefings

The Centre continues to provide timely and informative advice to key stakeholders, on relevant coral reef science issues. In 2019, researchers engaged in 108 briefings across both the public and private sectors.

Regular briefings were delivered to partners at the Great Barrier Reef Marine Park Authority (GBRMPA). For example, Terry Hughes, Tom Bridge, April Hall, Severine Choukroun, Iain Caldwell, Graeme Cumming, Alana Grech, Jodie Rummer, Jennifer Donelson, Michele Barnes, Sue-Ann Watson, Garry Russ, David Williamson, Geoff Jones, Hugo Harrison, Andrew Baird, Daniela Ceccarelli, Andrew Hoey, Kennedy Wolfe, Peter Mumbey and eight PhD candidates all gave briefings to GBRMPA throughout the year – on topics such as bleaching response, coral decline, reef management, and reef resilience. In August, GBRMPA and the ARC Centre co-hosted a ‘speed networking event’ attended by 40 people from both organisations, to facilitate the flow of information between the two organisations.

Sophie Dove, Andrew Baird, and Terry Hughes briefed the United States’ National Oceanic and Atmospheric Administration (NOAA) on listing specific corals on the IUCN Red List, and on the status of the Great Barrier Reef, and coral bleaching. Morgan Pratchett contributed to the Northern Territory Ecological Risk Assessment, for the Northern Territory Aquaculture Fishery. Rene Abesamis, Garry Russ, and Angel Alcala conducted several government briefings in the Philippines, on the design and establishment of marine reserves and marine protected areas.

Jon Brodie provided expert input to the Australian Government, Queensland Government and local conservation groups on water quality and its effects on the Great Barrier Reef. Scott Heron and Jon Day developed the Climate Vulnerability Index (CVI), a systematic tool to rapidly assess climate change risk to World Heritage sites, which has been widely adapted by sites in Australia, Azerbaijan, France, the United Kingdom, and elsewhere. In Australia, Jorge Álvarez-Romero gave 16 talks to industry, community, and government organisations, presenting development scenarios and initiatives for the Fitzroy River catchment, Kimberly, Western Australia.

Public talks and school outreach

Public engagement and outreach were a major focus in 2019, resulting in 75 outreach events and public talks conducted by Centre researchers, in 11 countries. For example, in April and November, Terry Hughes completed two lecture tours along the East and West Coast of the United States. In total, he gave 19 presentations at 14 universities, government agencies and organisations: including, the National Science Foundation, Columbia University, Stanford University, and the Scripps Institution of Oceanography. In June, Hughes also spoke at the Climate Reality Leadership Corps Training in Brisbane, with former U.S. Vice President Al Gore. Jodie Rimmer spoke at two sold-out events, at the World Science Festival in Brisbane, on ‘Saving what we’ve got: Australia’s wildlife under threat’ and ‘Let’s talk ‘Sharks’, reaching audiences exceeding 100,000. In October, Ove Hoegh-Guldberg joined a panel on ABC News to discuss ‘Is it too late to save the Great Barrier Reef, or is there hope?’

In November, Andrew Hoey worked closely with Ocean School, a collaboration between the Ocean Frontier Institute, Dalhousie University, and the National Film Board in Canada, to bring corals reefs, biodiversity and climate change to students in grades 6-9. Also this year, Verena Schoepf shared her research internationally through Skype a Scientist, where she spoke to students in Singapore and the UK.

Plenary talks

In 2019, ARC Centre researchers delivered 43 keynote addresses in 18 countries across the globe. For example, Ove Hoegh-Guldberg was an invited plenary speaker at the 24th World Energy Congress in Abu Dhabi, where he spoke about ‘Stepping up on Climate Action’. Tiffany Morrison was an invited panelist in the United States, at both the Ostrom Workshop (WOW) and the International Studies Association Annual Convention. Geoff Jones delivered an invited plenary lecture at the Gordon Research Conference on Marine Molecular Ecology, in Hong Kong. Rene Abesamis presented a plenary address at the Philippines National Academy of Sciences. Andrew Baird spoke at the Fourth Workshop on Trait-based Approaches to Ocean Life, in the UK.

In September, David Miller gave two keynote addresses in Germany on coral evolution and whole genome sequencing, at the Aannual International Workshop on Cnidarian Molecular and Cell Biology, as well as a plenary talk in China at the ICG Ocean 2019 conference. Danika Kleber delivered keynote talks at the 3rd World Small-Scale Fisheries Congress in Thailand, and the Seeds of Change: Gender Equality through Agricultural Research for Development in Canberra, Australia. Graeme Cumming delivered two keynote addresses at the Australian Ornithological Conference in Darwin, Australia and at the 29th International Congress for Conservation Biology in Malaysia.

The Conversation

The ARC Centre regularly publishes original research-based articles and Commentaries in the popular online media resource, The Conversation. Throughout 2019, ten ARC Centre researchers published 12 articles.

Examples include:

- Rebecca Green and James Gilmore. Bright white skeletons: some Western Australian reefs have the lowest coral cover on record. 22 March 2019. https://theconversation.com/bright-white-skeletons-some-western-australian-reefs-have-the-lowest-coral-cover-on-record-114228

The ARC Centre of Excellence has a clearly defined and effective governance structure that engages key stakeholders in strategic planning, research program development, and knowledge exchange. A key objective is to foster sustainable use, adaptive governance and effective management of the world’s coral reefs.

James Cook University is the Administering Organisation of the ARC Centre. Centre Director, Terry Hughes, reports directly to the JCU Provost, Professor Chris Cocklin. Operations are managed by the Chief Operations Officer, Jennifer Lappin, in consultation with the Centre Director and Assistant Director, Alana Grech, supported by an effective business team. Further support is provided by administrative staff at The Australian National University, The University of Queensland and The University of Western Australia.

The diagram below summarises the Centre’s governance structure and relationships. The Centre Director oversees the Centre’s research programs and liaises regularly with university nodes. Partner Investigators are based at the Australian Institute of Marine Science, the Great Barrier Reef Marine Park Authority and in leading international research institutions (p56). Adjunct researchers (p71) based in institutions in Australia and overseas make a significant contribution to the Centre’s research.

The Centre’s two principal governance committees are the Centre Advisory Board and the Scientific Management Committee. Eminent international researchers chair both committees, and the Chief Operations Officer, Jennifer Lappin, is Secretary. The Centre also supports two career development committees, run by Centre graduate students and early career researchers. These committees contribute to the development and mentoring of early career researchers, and are responsible for the organisation of annual retreats, training workshops and other career development activities (p42). An informal group, comprising all the Centre’s female staff, also provides mentoring and general support to female ECRs and students.

Centre Advisory Board

The Centre Advisory Board provides high-level strategic advice to the Centre Director, and facilitates and advises on strengthening linkages between the Centre, stakeholders, government and industry. The Centre Director and Chief Operations Officer provide the link between the Centre Advisory Board, the Scientific Management Committee (SMC) and Centre operations.

Membership of the Centre’s Advisory Board reflects the Centre’s strong multi-disciplinary research activities. Members include a distinguished international researcher as Chair, the Chief Executive Officer of the Great Barrier Reef Marine Park Authority, the Chief Executive Officer of the Australian Institute of Marine Science, a senior representative from WorldFish, and an independent senior University leader. In 2019, our long-standing Chair, Professor Brian Walker FAA, announced that he would retire at the end of the year. Brian’s leadership was characterised by fair and wise counsel and the enormous experience and knowledge of interdisciplinary research he brought to the Board. Similarly, Professor Mandy Thomas advised that she too would be retiring from her position at the end of 2019. Mandy also brought a deep understanding of multi-disciplinary research to the Board with enormous knowledge and experience of social sciences, Australia’s research funding processes and insightful analysis. We sincerely thank Brian and Mandy for their contribution to the leadership of the Centre over many years.

In 2019, the Centre welcomed two new Board members. Josh Thomas, the newly appointed Chief Executive Officer of the Great Barrier Reef Marine Park Authority joined in March. He brings with him a wealth of experience in senior roles in the public and private sectors, nationally and internationally. Dr Pip Cohen a senior program leader at WorldFish also joined the Centre’s Advisory Board later in the year. An interdisciplinary fisheries and social scientist, Pip will provide connections and insights into international non-profit research in developing nations and strategies for poverty reduction in particularly in SE Asia and the western Pacific.

The Board met formally in Sydney on 22nd October 2019. A key focus for the Board during 2019 was providing advice on preparing the Centre for longer term business continuity in 2021-2023, and establishing ongoing governance arrangements.

Scientific Management Committee

High-level operational decisions and stewardship of the ARC Centre’s scientific research program are the responsibilities of the Scientific Management Committee (SMC). The Committee is chaired by distinguished social scientist and pioneer of interdisciplinary research, Professor Katrina Brown, from the University of Exeter, United Kingdom. Other members are the Centre’s Director and Deputy Directors, leaders of each of the Centre’s Research Programs, the Centre’s current Laureate Fellows, and the Chief Scientist of the Great Barrier Reef Marine Park Authority. Membership of the SMC is continuously evolving. In 2019, Alana Grech was appointed as a new Program 2 leader, replacing Verena Schoepf who took up a prestigious position at the University of Amsterdam. At the end of 2019, Terry Hughes stepped down as the leader of Program 1 to support strong transition planning, and Joshua Cinner will assume this position in 2020. Similarly, Graeme Cumming will begin a Program 2 leader
Membership of the Scientific Management Committee

Professor Katrina Brown (Chair)
Chair in Social Science
University of Exeter
United Kingdom

Distinguished Professor Terry Hughes FAA
Centre Director and Leader, Research Program 1
James Cook University

Professor Tiffany Morrison
Leader, Research Program 1
James Cook University

Distinguished Professor Bob Pressey FAA
Leader, Research Program 1
James Cook University

Professor Sean Connolly
Leader, Research Program 2
James Cook University

Dr Alana Grech (from May 2019)
Leader, Research Program 2
James Cook University

Professor John Pandolfi
Leader, Research Program 2
University of Queensland

Dr Verena Schoepf (to May 2019)
Leader, Research Program 2
University of Western Australia

Associate Professor Maja Adamska
Leader, Research Program 3
Australian National University

Associate Professor Mia Hoogenboom
Leader, Research Program 3
James Cook University

Professor Ryan Lowe
Leader, Research Program 3
University of Western Australia

Professor Malcolm McCulloch FAA FRSM
Deputy Director
University of Western Australia

Professor Ove Hoegh-Guldberg FAA
ARC Australian Laureate Fellow and Deputy Director
University of Queensland

Dr David Wachenfeld
Chief Scientist
Great Barrier Reef Marine Park Authority

MEMBERSHIP

In 2019, the ARC Centre’s membership comprised: 69 Chief Investigators, Research Fellows and Associates; 30 Partner Investigators, resident international scholars and adjunct researchers; and 170 research students (p42). Nine of the Centre’s Research Fellows were funded by ARC Fellowships (Australian Laureate, Future and DECPRA) and one by an Advance Queensland Fellowship.

In 2019, the ARC Centre welcomed ten new Research Fellows and Associates: Brock Bergseth, Iain Caldwell, Jamie Caldwell, Gal Eyal, Vanessa Haller, Hugo Harrison, Sun Kim, Jacqueline Lau, Veronica Radice and Sharon Wismer. Five of these new recruits are women, and the Centre has achieved its target of 50:50 gender equity in research fellow recruitment.

We also said farewell to ten researchers in 2019 who have taken up new positions around the globe, further extending the ARC Centre’s network of alumni collaborators: Kay Critchell, Thomas DeCarlo, Juan Pablo D’Olivo Cordero, Nils Krueck, Michael McWilliam, Oliver Mead, Aurélie Moya, Verena Schoepf, Andrew Song, and Erin Vaughn. We wish them well in their future research careers!

CHIEF INVESTIGATORS AND RESEARCH FELLOWS

Professor Terry Hughes
Centre Director, James Cook University

Associate Professor Maja Adamska
ARC Future Fellow, Australian National University

Dr Jorge Alvarez-Romero
Research Fellow, James Cook University

Dr Kristen Anderson
Research Fellow, James Cook University and Australian Institute of Marine Science

Dr Natalia Andrade Rodriguez
Research Associate, James Cook University

Professor Andrew Baird
Chief Investigator, James Cook University

Dr Michele Barnes
Discovery Early Career Researcher Award (DECRA), James Cook University

Professor David Bellwood
ARC Australian Laureate Fellow, Chief Investigator, James Cook University

Dr Brock Bergseth
Research Fellow, James Cook University

Dr Yves-Marie Bozec
Research Fellow, University of Queensland

Dr Tom Bridge
Discovery Early Career Researcher Award (DECRA), James Cook University and Queensland Museum

Professor Jon Brodie
Research Fellow, James Cook University

Dr Iain Caldwell
Research Fellow, James Cook University

Dr Severine Choukrour
Research Associate, James Cook University

Professor Joshua Cinner
ARC Future Fellow, James Cook University

Professor Sean Connolly
Chief Investigator, James Cook University

Dr Peter Cowman
Discovery Early Career Researcher Award (DECRA), James Cook University

Dr Kay Critchell
Research Associate, University of Queensland

Professor Graeme Cumming
Research Fellow, James Cook University

Dr Thomas DeCarlo
Research Fellow, University of Western Australia

Dr Juan Pablo D’Olivo Cordero
Research Fellow, University of Western Australia

Dr Jennifer Donelson
ARC Future Fellow, James Cook University

Associate Professor Sophie Dove
Chief Investigator, University of Queensland

Dr Alana Grech
Research Fellow, James Cook University

Dr Rebecca Green
Research Associate, University of Western Australia

Dr Georgina Gurney
Research Fellow, James Cook University

Dr April Hal
Advance Queensland Research Fellow, James Cook University

Dr Oliver Mead
Research Fellow, University of Queensland

Dr Tom Bridge
Assistant Professor, James Cook University

Dr Juan Pablo D’Olivo Cordero
Research Fellow, University of Western Australia

Dr Jennifer Donelson
ARC Future Fellow, James Cook University

Associate Professor Sophie Dove
Chief Investigator, University of Queensland

Dr Alana Grech
Research Fellow, James Cook University

Dr Rebecca Green
Research Associate, University of Western Australia

Dr Georgina Gurney
Research Fellow, James Cook University

Dr April Hal
Advance Queensland Research Fellow, James Cook University

role early in 2020, following Sean Connolly’s move to the Smithsonian Tropical Research Institute. We sincerely thank Verena and Sean for their strong and committed leadership, for building cross-institutional collaborations, and for providing effective mentoring for women and early career researchers.

The SMC met formally three times in 2019, twice in Townsville and once in Sydney. Continuing priorities in 2019 were: research planning, fostering outstanding transdisciplinary research across the Centre’s research programs and nodes, producing high quality outputs, and mentoring postdoctoral fellows and postgraduate students. Members of the SMC continued to take a key role in providing advice to the Queensland and Australian Governments on the Reef 2050 Long-Term Sustainability Plan.
Dr Vanessa Haller
Research Associate, University of Queensland

Dr Hugo Harrison
Discovery Early Career Researcher Award (DECRA), James Cook University and Australian Institute of Marine Science

Associate Professor Scott Heron
Research Associate, James Cook University

Dr Karlo Hock
Research Fellow, University of Queensland

Professor Ove Hoegh-Guldberg
Deputy Director, ARC Australian Laureate Fellow, University of Queensland

Associate Professor Andrew Hoey
Research Fellow, James Cook University

Associate Professor Mia Hoogenboom
Chief Investigator, James Cook University

Professor Geoffrey Jones
Chief Investigator, James Cook University

Dr Sun Kim
Research Fellow, University of Queensland

Professor Michael Kingsford
Research Fellow, University of Queensland

Dr Danika Kleiber
Research Fellow, James Cook University and WorldFish, Malaysia

Dr Nils Krueck
Research Fellow, University of Queensland

Dr Jacqueline Lau
Research Fellow, James Cook University and WorldFish, Malaysia

Professor Ryan Lowe
Chief Investigator, University of Western Australia

Dr Robert Mason
Research Associate, University of Queensland

Professor Mark McCormick
Chief Investigator, James Cook University

Professor Malcolm McCulloch
Deputy Director, University of Western Australia

Dr Mike McWilliam
Research Associate, James Cook University

Dr Oliver Mead
Research Associate, Australian National University

Dr Vanessa Messner
Research Associate, James Cook University

Professor David Miller
Chief Investigator, James Cook University

Professor Tiffany Morrison
Chief Investigator, James Cook University

Dr Aurélie Moya
Research Fellow, James Cook University

Professor Peter Mumby
Chief Investigator, University of Queensland

Professor Philip Munday
Chief Investigator, James Cook University

Professor John Pandolfi
Chief Investigator, University of Queensland

Professor Morgan Pratchett
Chief Investigator, James Cook University

Professor Bob Pressy
Chief Investigator, James Cook University

Dr Veronica Radice
Research Associate, University of Queensland

Dr George Roff
Research Fellow, University of Queensland

Dr Cristian Rojis
Research Fellow, James Cook University

Associate Professor Jodie Rummer
Research Fellow, James Cook University

Professor Garry Russ
Chief Investigator, James Cook University

Dr Aleksey Sadekov
Research Fellow, University of Western Australia

Dr Eugenia Sampayo
Research Fellow, University of Western Australia

Dr Verena Schoepf
Research Fellow, University of Western Australia

Dr Andrew Song
Research Fellow, James Cook University and WorldFish, Malaysia

Dr Tim Staples
Research Fellow, University of Queensland

Dr Greg Torda
Research Fellow, James Cook University

Dr Erin Vaughn
Research Fellow, Australian National University

Dr Sue-Ann Watson
Research Fellow, James Cook University and Queensland Museum

Dr Kennedy Wolfe
Research Associate, University of Queensland

RESIDENT INTERNATIONAL SCHOLARS

Dr Jamie Caldwell
Research Fellow, NASA/NOAA/University of Hawai'i, USA

Dr Gal Eyal
Marie Curie Fellow, Israel

Dr Björn Illing
Deutsche Forschungsgemeinschaft (DFG) Fellow, Germany

Dr David Mills
Senior Research Fellow, WorldFish, Malaysia

Dr Ignasi Montero-Serra
Endeavour Fellow, University of Barcelona, Spain

Dr Sharon Wismer
Swiss National Science Foundation Postdoctoral Fellow, Switzerland

PARTNER INVESTIGATORS AND ADJUNCT RESEARCHERS

Dr Vanessa Adams
University of Tasmania

Professor Serge Andréfouët
Institut de Recherche pour le Développement, New Caledonia

Dr Mary Bonin
Great Barrier Reef Marine Park Authority

Dr Ciemon Caballes
Ultra Coral Australia

Dr Philippa Cohen
WorldFish, Malaysia

Dr Louis Evans
University of Exeter, United Kingdom

Professor Nick Graham
Lancaster University, United Kingdom

Dr Alison Green
The Nature Conservancy

Dr Richard Hamilton
The Nature Conservancy

RESEARCH SUPPORT STAFF

Dr Rene Abesamis
James Cook University

Dr Nitin Bhatia
James Cook University

Dr David Wachenfeld
Great Barrier Reef Marine Park Authority

Professor Stephen Palumbi
Stanford University, USA

Dr Andrew Song
University of Technology, Sydney

Professor Madeleine van Oppen
University of Melbourne

GRADUATE STUDENTS (SEE PAGE 45)
In 2019, researchers from the ARC Centre of Excellence produced 411 publications, comprising 363 journal articles, 4 books, 31 book chapters, 5 conference proceedings, and 8 reports. Since 2014, annual publications have increased by >30%, exceeding one each day.

Centre researchers published 166 articles in journals that have an Impact Factor greater than four, including 39 outputs this year in prestige journals – Nature and other Nature journals, Science, Trends in Ecology and Evolution, Science Advances, Molecular Biology and Evolution, Proceedings of the National Academy of Sciences, Frontiers in Ecology and the Environment and Global Environmental Change. The average Impact Factor for all 363 journal articles in 2019 was 5.7. The Centre’s research outputs were published this year in a total of 187 journal titles that span many fields of research, reflecting the multidisciplinary breadth of the Centre’s activities.

According to Scopus, Centre researchers were cited more than 500 times each, and 22 had more than 1000 citations during the year.

Articles published in 2019 that received the highest Altmetric scores for ARC Centre publications were:

BOOKS

A multiple driver: how interactions among marine stressors influence species distributions.

Kline, I, Teneva, L, Okamoto, DK, and Galindo, U (2019). Climate change effects on coral reefs.

Lajus, LD, Hicks, CC, Guner, GY, and Cinner, JE (2019). Multiple stressor impacts on coral reefs.

2020 ACTIVITY PLAN

Note added in press: This Activity Plan for 2020 was developed well in advance of the COVID-19 pandemic. It will be modified in response to the pandemic’s effects on Centre personnel, and restrictions on travel and other activities.

1. RESEARCH
 a. Conduct world-leading, innovative research that consolidates the Centre’s international profile.
 b. Implement strategic recruitment and workforce establishment to support research program directions.
 c. Grow the Centre’s research project ‘Coral Reefs in the Anthropocene’, with an emphasis on an interdisciplinary approach to governance, resilience and adaptation.
 d. Assess coral bleaching outlook on the Great Barrier Reef and worldwide, and extend research in this area, targeting high profile journals, especially Science and Nature.
 e. Present 125 talks, and have a high-profile presence at the quadrennial International Coral Reef Symposium (ICRS2020) in Bremen, Germany in July 2020.

2. RESEARCH TRAINING AND PROFESSIONAL DEVELOPMENT
 a. Deliver professional development workshops on statistics, publishing skills and strategies, scientific writing, networking at conferences, effective scientific presentations and career pathways.
 b. Collaborate with the Student Committee of the International Coral Reef Society to develop professional development programs at the ICRS2020.
 c. Support and promote the research of ARC Centre students and Early Career Researchers presenting at ICRS2020.
 d. Continue to progress a leadership development program for women in STEM, for PhD students and Research Fellows.
 e. Deliver workshops to address unconscious bias and gender stereotypes.
 f. Provide mentoring and coaching to early career researchers, in development of research proposals and award applications.

3. NATIONAL AND INTERNATIONAL LINKAGES
 a. Grow strategic, value-adding, international collaborations and partnerships.
 b. Strengthen the Centre’s research partnership with WorldFish on small-scale fisheries, including the recruitment of a fifth research fellow based at the ARC Centre.
 c. Increase visiting scholar programs, working group meetings and co-tutelle PhD student arrangements with international partners and collaborators.
 d. Extend multi-institutional and/or multi-disciplinary supervisory arrangements for Centre students.

4. IMPACTS AND END USER ENGAGEMENT
 a. Showcase the ARC Centre’s achievement over two ARC funding cycles.
 b. Pursue additional contract research with Australian and State governments, helping to provide high quality research to inform policy and decision-making.
 c. Continue to engage with government and stakeholders to provide the science that underpins the Reef 2050 Long-Term Sustainability Plan.
 d. Promote the impact of the Centre’s research at the quadrennial International Coral Reef Symposium in Bremen, Germany.
 e. Build the Centre’s social media engagement strategies with an aim of exceeding 10,000 followers on Twitter.

5. GOVERNANCE
 a. Appoint a new Chair of the Centre’s Advisory Board and expand membership to reflect the Centre’s changing research directions, and to assist strategic planning.
 b. Renew research program leadership roles on the Scientific Management Committee, to facilitate succession planning.
 c. Review the Centre’s Strategic Plan for business continuity post ARC Centre of Excellence funding to strengthen and diversify income sources.
 d. Mentor female researchers and mid-career researchers into leadership roles in the Centre.
 e. Continue developing a Centre culture that values diversity, gender equity and the family.
 f. Update the Centre’s KPI targets in view of strong performance.
FINANCIAL STATEMENT

ARC CENTRE OF EXCELLENCE FOR CORAL REEF STUDIES
STATEMENT OF OPERATING INCOME AND EXPENDITURE FOR YEAR ENDED 31 DECEMBER 2019

<table>
<thead>
<tr>
<th></th>
<th>2018</th>
<th>2019</th>
<th>2020 forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARC Centre Grant</td>
<td>$4,394,936</td>
<td>$4,478,439</td>
<td>$4,559,049</td>
</tr>
<tr>
<td>ARC Fellowships</td>
<td>660,724</td>
<td>735,407</td>
<td>721,732</td>
</tr>
<tr>
<td>ARC Other</td>
<td>123,773</td>
<td>135,812</td>
<td></td>
</tr>
<tr>
<td>Host Institutions cash support</td>
<td>3,909,991</td>
<td>4,037,115</td>
<td>3,701,794</td>
</tr>
<tr>
<td>State Government</td>
<td></td>
<td>49,469</td>
<td>66,309</td>
</tr>
<tr>
<td>Commonwealth Government other grants</td>
<td>564,950</td>
<td>553,978</td>
<td>547,754</td>
</tr>
<tr>
<td>International and other contracts</td>
<td>1,173,993</td>
<td>938,311</td>
<td>713,376</td>
</tr>
<tr>
<td>Total Income</td>
<td>$10,828,367</td>
<td>$10,928,532</td>
<td>$10,310,014</td>
</tr>
<tr>
<td>Expenditure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salaries</td>
<td>$7,709,719</td>
<td>$7,763,010</td>
<td>$7,840,641</td>
</tr>
<tr>
<td>Equipment</td>
<td>482,849</td>
<td>410,628</td>
<td>369,565</td>
</tr>
<tr>
<td>Travel</td>
<td>1,431,301</td>
<td>1,395,438</td>
<td>976,807</td>
</tr>
<tr>
<td>Research maintenance and consumables</td>
<td>1,328,190</td>
<td>1,301,775</td>
<td>1,171,598</td>
</tr>
<tr>
<td>Scholarships and prizes</td>
<td>169,268</td>
<td>190,504</td>
<td>192,409</td>
</tr>
<tr>
<td>Public outreach and administration</td>
<td>129,245</td>
<td>122,046</td>
<td>97,637</td>
</tr>
<tr>
<td>Total Expenditure</td>
<td>$11,250,572</td>
<td>$11,183,402</td>
<td>$10,648,657</td>
</tr>
<tr>
<td>Surplus (Deficit)</td>
<td>$(422,205)</td>
<td>$(254,870)</td>
<td>$(338,643)</td>
</tr>
</tbody>
</table>

FINANCIAL OUTLOOK

As at December 2019, the total cash and in-kind financial outlook for the ARC Centre of Excellence for Coral Reef Studies for 1 January 2014 to 31 December 2020 totals $157.3m, 29% higher than when the Centre was established in 2014. The ARC Centre of Excellence grant represents 19% of the total funding pool.
Standard Key Performance Indicators for ARC Centres of Excellence

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Target 2019</th>
<th>Outcome 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of research outputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Journal articles/books/book chapters (p74)</td>
<td>340</td>
<td>411</td>
</tr>
<tr>
<td></td>
<td>• Published Data sets</td>
<td>35</td>
</tr>
<tr>
<td>Quality of research outputs (p73)</td>
<td>100</td>
<td>166</td>
</tr>
<tr>
<td>Publications in journals with Impact Factor >4</td>
<td>4.6</td>
<td>5.7</td>
</tr>
<tr>
<td>Citations: total by Centre researchers</td>
<td>30,000</td>
<td>41,036</td>
</tr>
<tr>
<td>Centre researchers with >500 annual citations</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td>Awards and prizes (p8)</td>
<td>30</td>
<td>43</td>
</tr>
<tr>
<td>Number of training courses held/offered by the Centre (p42) (over and above the standard courses offered by institutions)</td>
<td>27</td>
<td>32</td>
</tr>
<tr>
<td>Number of workshops/conferences held/offered by the Centre (p42)</td>
<td>15</td>
<td>23</td>
</tr>
<tr>
<td>Number of additional researchers working on Centre research (p69)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Postdoctoral researchers</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>• PhD students</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>• Masters by research/coursework students</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>• Honours students</td>
<td>4</td>
</tr>
<tr>
<td>Number of postgraduate completions (p42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PhD students</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>• Masters by research/coursework students</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>• Honours students</td>
<td>4</td>
</tr>
<tr>
<td>Number of mentoring programs offered by the Centre (p42)</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Number of presentations/briefings (p62)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• To the public</td>
<td>40</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>• To government/agencies/industry/business/end-users/NGOs (national and international) (in addition to workshops/conferences above)</td>
<td>80</td>
</tr>
<tr>
<td>Number of new organisations collaborating with, or involved in, the Centre</td>
<td>45</td>
<td>154</td>
</tr>
</tbody>
</table>

Centre-Specific Key Performance Indicators

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Target 2019</th>
<th>Outcome 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publications (p73)</td>
<td>100 over life of Centre</td>
<td>39 (168 to date)</td>
</tr>
<tr>
<td>Prestige publications (e.g. Nature, Science, PNAS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interdisciplinarity of research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• No. of journal titles in which Centre of Excellence research published (p73)</td>
<td>105</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>• No. of students with multi-disciplinary supervisory arrangements (p42)</td>
<td>52</td>
</tr>
<tr>
<td>Centre integration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• No. of publications with cross-institutional co-authorship</td>
<td>190</td>
<td>313</td>
</tr>
<tr>
<td>Global reach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• No. of countries where Centre undertakes field research</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>• No. of international co-authors</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>• No. of invited talks/papers/keynotes at international meetings</td>
<td>27</td>
</tr>
<tr>
<td>Media (p62)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Commentaries about the Centre's achievements</td>
<td>4,200</td>
<td>5,500</td>
</tr>
<tr>
<td></td>
<td>• Articles</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>• Centre of Excellence Website hits</td>
<td>7.5m</td>
</tr>
<tr>
<td>International visitors (p56)</td>
<td>75</td>
<td>79</td>
</tr>
<tr>
<td>Gender equity</td>
<td>50:50</td>
<td>50:50</td>
</tr>
<tr>
<td>• Research Fellow appointments (p69)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Gender equity and diversity mentoring, and training activities: no. of participants and attendances (p42)</td>
<td>25</td>
</tr>
</tbody>
</table>
The ARC Centre of Excellence for Coral Reef Studies thanks the following organisations and partners for their ongoing support:

- Australian Academy of Science
- Australian Centre for International Agricultural Research (ACIAR)
- Australian Government: Department of the Environment and Energy
- Australian Institute of Marine Science (AIMS)
- Australian Coral Reef Society
- Australian Marine Sciences Association
- Australian Institute for Fish Biology
- Australian Museum
- Australian Society for Fish Biology
- Beijing Genomics Institute Australia
- Center for Ocean Solutions, Stanford University, USA
- Centre de Recherches Insulaires et Observatoire de l’Environnement (CRIOBE), French Polynesia
- Centre National de la Recherche Scientifique (CNRS), France
- Charles Darwin University, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia
- Company of Biologists, UK
- Conservation International
- Coral Reef Research Foundation, Palau
- Deutsche Forschungsgemeinschaft, Germany
- Fisheries Research and Development Corporation, Canberra
- Great Barrier Reef Foundation, Australia
- Great Barrier Reef Marine Park Authority, Australia
- Holsworth Wildlife Research Endowment, Equity Trustees Charitable Trust
- Institut des récifs coralliens du Pacifique (IRCP), French Polynesia
- International Union for the Conservation of Nature
- James S. McDonnell Foundation, USA
- King Abdullah University of Science and Technology, Saudi Arabia
- Københavns Museum, Denmark
- Korean Institute of Ocean Science and Technology (KIOST)
- Lizard Island Research Station and Foundation, Australia
- Lord Howe Island Board, Australia
- Mahonia Na Dari and Walindi Plantation Resort, Papua New Guinea
- Marine Parks Authority, Lord Howe Island Marine Park, Australia
- Ministry of Fisheries, Tonga
- Musée national d’histoire naturelle, France
- Musée Zoologique, France
- Museum für Naturkunde, Germany
- National Environment Science Programme, Australia
- National Institute for Environmental Studies (NIES), Japan
- National Institute of Water and Atmospheric Research (NIWA), New Zealand
- National Oceanic and Atmospheric Administration (NOAA), USA
- National Research Foundation of South Africa
- National Science Foundation, USA
- National Socio-Environmental Synthesis Center (SESYNC), University of Maryland, USA
- National University of Singapore
- Natural History Museum, UK
- Naturhistorisches Museum, Vienna, Austria
- Northern Territory Department of Primary Industries and Resources
- Okinawa Institute of Science and Technology Graduate University, Japan
- Palau International Coral Reef Center
- Prince Albert II of Monaco Foundation, Monaco
- Queensland Government Department of Agriculture and Fisheries
- Queensland Department of Environment and Science
- Queensland Department of Natural Resources, Mines and Energy
- Queensland Museum Network
- Reef Rescue, Australia
- Schmidt Ocean Institute, USA
- Sea World Research and Rescue Foundation, Australia
- Secretariat for the Pacific Community, Nauru
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Japan
- Smithsonian Marine Network, USA
- Society for Experimental Biology
- Stockholm Resilience Centre, Sweden
- The Crawford Fund, Australia
- The Nature Conservancy, International
- Torres Strait Regional Authority
- United States National Museum (Baird project)
- United Nations Environment Programme
- University of Exeter, United Kingdom
- University of Hong Kong
- University of Perpignan, France
- Western Australian Department of Primary Industries and Regional Development
- Western Australian Department of Biodiversity, Conservation and Attractions
- Western Indian Ocean Marine Science Association (WIOMSA), Zanzibar
- Wildlife Conservation Society, USA
- WorldFish, Malaysia
- World Wildlife Fund

ACKNOWLEDGEMENTS