1

People and ecosystems

Understanding of the links between coral reef ecosystems, the goods and services they provide to people, and the wellbeing of human societies.

2

Ecosystem dynamics: past, present and future

Examining the multi-scale dynamics of reefs, from population dynamics to macroevolution

3

Responding to a changing world

Advancing the fundamental understanding of the key processes underpinning reef resilience.

Coral Bleaching

Coral Bleaching

Coral Reef Studies

ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia

Phone: 61 7 4781 4000
Email: info@coralcoe.org.au

Menu Image Menu Image Menu Image Menu Image Menu Image Menu Image Menu Image
Menu
Facebook Twitter YouTube FlickR

In a world first study, researchers at the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) at James Cook University have unlocked the genetic mystery of why some species are able to adjust to warming oceans.

Adaptation to warmer water happens in the genes. Image: H. Veilleux

In a collaborative project with scientists from the King Abdullah University of Science and Technology (KAUST) in Saudi Arabia, the researchers examined how reef fish’s genes responded after several generations living at higher temperatures.

“Some fish have a remarkable capacity to adjust to higher water temperatures over a few generations of exposure,” says Dr Heather Veilleux from the Coral CoE.

“But until now, how they do this has been a mystery.”

Using cutting-edge molecular tools the research team identified 53 key genes that are involved in long-term, multi-generational acclimation to higher temperatures.

“By understanding the function of these genes we can understand how fish cope with higher temperatures,” explains Dr Veilleux.

“We found that shifts in energy production are key to maintaining performance at high temperatures,” says Dr Veilleux.

“Immune and stress responses also helped fish cope with warmer water.”

The project involved rearing coral reef fish at different temperatures for multiple generations in purpose-built facilities at James Cook University.

“We then used state-of-the-art genetic methods to examine gene function in the fish,” says Dr Tim Ravasi from KAUST.

“ By matching gene expression to metabolic performance of the fish we were able to identify which genes make acclimation to higher temperatures possible,” adds Professor Philip Munday from the Coral CoE.

The study is the first to reveal the molecular processes that may help coral reef fishes and other marine species adjust to warmer conditions in the future.

“Understanding which genes are involved in transgenerational acclimation, and how their expression is regulated, will improve our understanding of adaptive responses to rapid environmental change and help identify which species are most at risk from climate change and which species are more tolerant,” Dr Veilleux says.

~~~

Paper:

Molecular processes of transgenerational acclimation to a warming ocean, by Heather D. Veilleux, Taewoo Ryu, Jennifer M. Donelson, Lynne van Herwerden, Loqmane Seridi, Yanal Ghosheh, Michael L. Berumen, William Leggat, Timothy Ravasi and Philip Munday is published in the journal Nature Climate Change.
http://dx.doi.org/10.1038/nclimate2724

Images:

https://www.dropbox.com/sh/iaux0wgljooc1yu/AABxiMtWe6m_W3N0U0KpVWTYa?dl=0

(Images must carry credits as listed in Dropbox folder)

Contacts:

Dr Heather Veilleux – heather.veilleux@jcu.edu.au, +61 7 47814850ARC Centre of Excellence for Coral Reef Studies

Professor Philip Munday – Philip.munday@jcu.edu.au, +61 (0) 7 47815341ARC Centre of Excellence for Coral Reef Studies

Professor Timothy Ravasi – timothy.ravasi@kaust.edu.sa +966-544700067
KAUST Environmental Epigenetic Program (KEEP) and the Red Sea Research Center

A shark’s habitat can reduce its sensitivity to rising CO2 levels, according to Australian scientists.

Globally, ocean acidification – linked to emissions of greenhouse gases – remains a major concern and scientists say it will harm many marine species over the next century.

Researchers from the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) at James Cook University have found that the epaulette shark, a species that shelters within reefs and copes with low oxygen levels, is able to tolerate increased carbon dioxide in the water without any obvious physical impact.

“As part of the study we exposed the sharks to increased CO2 for more than two months, mirroring the levels predicted for the end of the century,” says study co-author Dr Jodie Rummer from Coral CoE.

“We then tested the sharks’ respiratory system, measuring how much oxygen it needed to maintain basic function under the experimental conditions.”

The researchers found the sharks were regulating their systems to counter the higher levels of acid in their bodies. Importantly, Dr Rummer explains, the sharks’ ability to cope with low oxygen levels – similar to that found in its natural habitat – was unaffected by high CO2 levels.

Study co-author, Professor Philip Munday from the Coral CoE says the sharks’ physiological adaptations, which enables it to cope with the conditions within reefs, makes them better able to tolerate ocean acidification.

“Species that live in shallow reef environments, where they can experience naturally high CO2 levels on a regular basis, may have adaptations that make them more tolerant to future rises in CO2 levels than other species.”

Professor Munday says the next critical step is to test the sensitivity of other shark species to ocean acidification.

“Species that live in the open ocean may be more susceptible to future acidification than those that naturally live in shallow reef environments where they already experience a variable environment.”

Dr Rummer adds that by determining which animals are more and less susceptible to high CO2 than others, scientists will be better able to predict the future consequences of ocean acidification on marine ecosystems.

Paper

A product of its environment: The epaulette shark (Hemiscyllium) exhibits physiological tolerance to elevated environmental CO2 by Dennis D.U Heinrich, Jodie Rummer, Andrea J. Morash, Sue-Ann Watson, Colin A. Simpfendorfer, Michelle R Heupel and Philip L. Munday is published in the journal Conservation Physiology.

Link to paper: http://conphys.oxfordjournals.org/content/2/1/cou047.full

Images

Epaulette shark sheltering in reef – image credit: M.Heupel.

Contact

Dr Jodie Rummer, Coral CoE – +61 7 4781 5300, +61 (0) 439 166 171
jodie.rummer@jcu.edu.au

Professor Philip Munday, Coral CoE – +61 7 4781 5341
philip.munday@jcu.edu.au

Eleanor Gregory, Coral CoE Media – +61 (0) 428 785 895
eleanor.gregory@jcu.edu.au

Seminars

More
Australian Research Council Pandora

Partner Research Institutions

Partner Partner Partner Partner
Coral Reef Studies

ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia

Phone: 61 7 4781 4000
Email: info@coralcoe.org.au