Fish diet heats up marine biodiversity hotspot
Scientists have discovered a never-before-seen biodiversity pattern of coral reef fishes that suggests some fishes might be exceptionally vulnerable to environmental change. A new study shows plank
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au
An international team of researchers has mapped Nemo’s genome, providing the research community with an invaluable resource to decode the response of fish to environmental changes, including climate change.
In a breakthrough study led by the King Abdullah University of Science and Technology (KAUST) and the ARC Centre of Excellence for Coral Reef Studies (Coral CoE), researchers used high-tech sequencing tools to create one of the most complete genetic maps for the orange clownfish, a common reef inhabitant and star of the Disney movie, Finding Nemo.
“This genome provides an essential blueprint for understanding every aspect of the reef fish’s biology,” said lead author Dr Robert Lehmann of KAUST in Saudi Arabia.
“It contains 26,597 protein coding genes. And like the world’s largest jigsaw puzzle, it took patience and time to assemble.”
The orange clownfish, Amphiprion percula, is not only the most recognized reef fish on Earth, but also one of the most highly studied.
“This species has been central to ground-breaking research in the ecological, environmental and evolutionary aspects of reef fishes,” said co-author Professor Philip Munday of Coral CoE at James Cook University in Australia.
“For example, the clownfish is a model for studying sex change in fishes. It has also helped us understand patterns of larval dispersal in reef fishes and it’s the first fish species for which it was demonstrated that predator avoidance behaviour could be impaired by ocean acidification.”
The team used state-of-the-art technology to sequence the clownfish’s genome. Their genomic and transcriptomic data is now available via the Nemo Genome DB database.
“The clownfish comprises approximately 939 million nucleotides that needed to be fit together,” said co-author Professor Timothy Ravasi of KAUST.
“This is an extremely valuable resource for the research community and will further establish the orange clownfish as an ideal lab subject for genetics and genomic studies.”
“This is one of the most complete fish genomes ever produced,” said co-author Professor David Miller of Coral CoE at James Cook University.
“Using the PacBio single molecule, real-time sequencing technology, enabled us to achieve a polished result.”
The paper “Finding Nemo’s Genes: A chromosome-scale reference assembly of the genome of the organge clownfish, Amhiprion percula” is published today in the journal Molecular Ecology Resources.
Images available here.
This research is dedicated to the memory of Dr Sylvain Forêt, a brilliant scientist, co-author, colleague and friend. (Tribute, pg. 10)
Citation: Lehmann, R, Lightfoot, D.J., Schunter, C., Mitchell, C.T., Ohyanagi, Mineta, K., Foret, S., Berumen, M.L., Miller, D.J., Aranda, M., Gojobori, T., Munday, P.L., and Ravasi, T. (2018) Finding Nemo’s Genes: A chromosome-scale reference assembly of the genome of the orange clownfish Amphiprion percula. Molecular Ecology Resources
CONTACTS
AUSTRALIA
Prof Philip Munday
Coral CoE
P: +61 (0) 0408 714 794, +61 (0)7 4781 5341 (AEST/ GMT +10)
SAUDI ARABIA
Dr Robert Lehmann
KAUST (AST/ GMT +3)
Prof Timothy Ravasi
KAUST
P: +61 (0) 491333697 (PDT/ GMT -7)
E: timothy.ravasi@kaust.edu.sa
FOR MORE INFORMATION
Catherine Naum
Communications Manager
ARC Centre of Excellence for Coral Reef Studies
P: +61 (0) 0428 785 895, +61 (0)7 4781 6067 (AEST/ GMT +10)
Michelle Ponto
Communications – Editorial and Global Media Manager
King Abdullah University of Science and Technology
P: +966 (54) 470 1668 (AST/ GMT +3)
E: michelle.ponto@kaust.edu.sa
Scientists have discovered a never-before-seen biodiversity pattern of coral reef fishes that suggests some fishes might be exceptionally vulnerable to environmental change. A new study shows plank
Scientists say stable seafood consumption amongst the world’s poorer coastal communities is linked to how local habitat characteristics influence fishing at different times of the year. In the co
An international group of scientists is predicting markedly different outcomes for different species of coral reef fishes under climate change – and have made substantial progress on picking the ‘
New research has found as climate change causes the world’s oceans to warm, baby sharks are born smaller, exhausted, undernourished and into environments that are already difficult for them to survi
Abstract: Social networks have been and remain important across the Pacific Islands, and beyond, for building and maintaining social-ecological resilience. However, there is little quantitative infor
Abstract: The global conservation community is comprised of a range of organisations, processes, and professionals. Given the diversity of these actors, and the complexity of the systems that conser
Abstract: Seasons create a rhythm in nature and, by extension, in the lives of people who depend directly on natural resources. However, our understanding of how seasons affect the ways that people
Abstract: Oceanic shark populations have declined 77% over the past 60 years as a result of overexploitation in fisheries. However, sustainable shark management is limited to a few developed nations
Abstract: Vertigo3 is a new class of small, fast and agile ‘true-flight’ underwater glider, purposely designed for robotic, artificial intelligence-assisted broadscale marine surveys, and capable
Abstract: Recurrent marine heat waves are leading to widespread coral bleaching, transforming the structure and function of tropical coral reefs. Past bleaching events have highlighted large variatio
Abstract: Shallow-water tropical seascapes typically include a range of habitat types such as coral reefs, mangroves, macroalgal and seagrass beds. These habitats can occur in close proximity and are
Abstract: When you think of high performing animals, fish larvae likely do not come to mind. This is because, upon hatch, fish larvae are generally under-developed, and swimming begins during late-la
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au