People and ecosystems

Understanding of the links between coral reef ecosystems, the goods and services they provide to people, and the wellbeing of human societies.


Ecosystem dynamics: past, present and future

Examining the multi-scale dynamics of reefs, from population dynamics to macroevolution


Responding to a changing world

Advancing the fundamental understanding of the key processes underpinning reef resilience.

Coral Bleaching

Coral Bleaching

Coral Reef Studies

ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia

Phone: 61 7 4781 4000
Email: info@coralcoe.org.au

Menu Image Menu Image Menu Image Menu Image Menu Image Menu Image Menu Image
Facebook Twitter YouTube FlickR

Study lead author, Dr Tom Bridge from the ARC Centre of Excellence for Coral Reef Studies at James Cook University, says the research, published in the journal Proceedings of the Royal Society B, found that tail shape can help predict if a fish is likely to exist across a range of water depths.

“We thought that the ability to see in deep, dark waters would influence which fish could live in both shallow and deep habitats. However, we found that the ‘caudal fin aspect ratio’, which measures the shape of the fishes tail, is the best predictor of which fish can live in both sun-drenched shallows and the ‘twilight zone’,” Dr Bridge says.

“In other words, fishes with more forked tails are significantly more likely to be found in both shallow and deep habitats than species with more rounded tails.”

Dr Bridge says it’s not known exactly why this is the case, though it’s suspected that the forked tail allows fish to swim more ‘silently’.

“The capacity for ‘stealth swimming’ is particularly important in deeper habitats, where light irradiance and wave energy are low and species rely on sensing changes in water pressure to capture prey and avoid predators.”

Coral reefs are typically thought to occur in shallow, sun-lit waters, but new technology is revealing that reefs in the ocean’s ‘twilight zone’, 50-150 m deep, support diverse and unique communities.

However, conditions on these deep reefs can be challenging for coral reef fishes, with low light, high pressure, and low temperatures.

Study co-author, Dr Osmar Luiz from Macquarie University says species that can survive in the twilight zone may be less susceptible to population declines and extinction.

“Identifying which species can occur over a broad depth range is important for understanding which fish are more vulnerable to local population declines and extinction, particularly from disturbances such as cyclones and coral bleaching events.”

The researchers say the next step is to understand exactly what it is about the forked tails that provides fishes with such an advantage in deeper water.

The paper, Ecological and morphological traits predict depth-generalist fishes on coral reefs by Tom C. L. Bridge, Osmar J. Luiz, Richard R. Coleman, Corinne N. Kane and Randall K. Kosaki is published in the journal,Proceedings of the Royal Society B.
All images please credit: Tom Bridge

Dr Tom Bridge +61 (0) 414 219 020 or +61 (0) 7 4781 6189
Email: thomas.bridge@jcu.edu.au

An investigation of previously unexplored depths of Australia’s Coral Sea has revealed living fossils, rare corals and sponges, and ecosystems that have remained largely unchanged for millions of years.

A team of Australian and German researchers has published their analysis of data, specimens, photographs and video footage collected in 2009, when they sent a remotely operated vehicle (ROV) to a depth of 800 metres at Osprey Reef off the far north Queensland coast.

“Osprey Reef is one of most-dived locations in the Coral Sea, but diving only reveals the top thirty metres or so,” said James Cook University’s Dr Robin Beaman, whose seabed maps helped guide the expedition.

“The reef sits atop a coral bank that rises almost 1500 metres from the surrounding Queensland Plateau,” JCU researcher Dr Tom Bridge said. “One of the attractions for divers is the sight of the sheer walls of the outer reef slope, disappearing into the depths, but until this expedition few people knew what was down there.”

The research was conducted by scientists from: James Cook University; Ludwig-Maximilians-Universität, Munich; the Natural History Museum, Berlin; Göttingen University; Queensland Museum and the University of Queensland.

The researchers sent the ROV, from the Centre for Marine Environmental Sciences in Bremen, Germany, to a depth of 800 metres and then recorded its slow ascent to the surface, recording precise depth information for each finding.

After years of painstaking analysis, the expedition’s results have just been published in the journal Marine Biodiversity.

“At 800 metres the water is cold and dark, and the environmental conditions really haven’t changed much for millions of years,” Dr Beaman said.

“Between 800 and 450 metres, we found corals and sponges that aren’t related to the species we see in the warmer waters up top,” he said. “There are relict organisms that have survived in this area throughout the varying climate cycles of the Pleistocene, stretching back several million years.”

Here, the researchers found large colonies of shimmering golden corals (of the genus
Chrysogorgia) and precious red coral (Corallium) familiar to jewellery makers in other parts of the world, but never before found in the Australian tropics.

“What we saw in this deepest zone was very much determined by the nature of the substrate or sediment cover,” Dr Beaman said.

“In areas of deep sand we saw species that spend most of their time buried in or crawling over the sand, and we were able to film their tracks and burrows.

“In other places, we saw glass sponges and bamboo corals growing on small rocks with a thin layer of sand – we were also able to film sea urchins, small crustaceans and spoon worms in those areas.

“But the most diverse communities, where we found the beautiful golden and precious red corals, were in areas where large rocks provided protection and niches for all sorts of marine life, including stalked sea lilies, crustaceans and gastropod molluscs.”

Among the living fossils recorded are some species of glass sponge that are new to science.

“We were also able to film the chambered nautilus in a zone between 500 and 600 metres,” Dr Beaman said. “The nautilus belongs to a very ancient family of cephalopods. We didn’t know a lot about their habits, so it was exciting to see them at this depth.”

Rising slowly towards the surface, the ROV revealed an eerily bare zone between 400 and 250 metres below sea level.

“It’s a zone that’s too cold for the tropical sea life we know so well, but it’s too warm for the ancient life we found at greater depths,” Dr Beaman said. “Around 200 metres, only very little sunlight penetrates and the ecosystem is dominated by black corals, hydro corals and soft corals.”

Closer to the surface and life-giving light, the steeply sloping outer walls of Osprey Reef become busier, densely populated by gorgonian corals (sea whips and sea fans), soft corals and sponges.

At around 120 metres below sea level, the ROV revealed another ancient secret.

“In the reef’s outer walls we found a series of caves likely formed by wave action. These caves mark the last ice age, about 20,000 years ago, when sea levels were 120 metres lower than today,” Dr Beaman said.

“In addition to the excitement of seeing a previously unknown world, we now have a wealth of knowledge to help guide the conservation and protection of the Great Barrier Reef and the Coral Sea,” Dr Tom Bridge said.

Video (3min:46sec, 1.071GB) from the expedition can be viewed at:http://ftt.jcu.edu.au/deepreef/temp/OspreyReef_Youtube.mov

Information for media:
Dr Rob Beaman in Cairns
Tel 07 4232 1693, Mobile 0438 623 145, robin.beaman@jcu.edu.au
Dr Tom Bridge in Townsville
Mobile 0414 219 020, thomas.bridge@jcu.edu.au

he Perth Canyon expedition

The Perth Canyon is a deep ocean canyon just 50 kilometres off the West Australian coastline near Perth, yet it remains largely unexplored.  A group of acclaimed scientists, led by Professor Malcolm McCulloch from the University of Western Australia and the ARC Centre of Excellence for Coral Reef Studies will join with the Schmidt Ocean Institute to be among the first to explore the vast canyon – which is about the size of the USA’s Grand Canyon.

The underwater canyon formed over tens of millions of years and extends from the continental shelf edge of Western Australia to depths of more than four kilometres to the abyssal sea floor.  Major up-swelling of essential nutrients in the canyon makes it a global marine hotspot, attracting blue whales and other large fauna that migrate to the waters seasonally to feed.  Despite being so close to Perth and Fremantle, little is known about life in its deep abyss.

The expedition runs from March 1 to March 10, 2015.

Click here to watch the Schmidt Ocean Institute’s expedition video in real time…

Meet the team

The Perth Canyon expedition is led by Professor Malcolm McCulloch and includes researchers from the University of Western Australia, the ARC Centre of Excellence for Coral Reef Studies, the Western Australian Museum, CSIRO and the Institute of Marine Sciences in Italy.

Click here to meet the team…

Professor Malcolm McCulloch discusses the expedition on ABC Local Radio Perth.

Click here to listen…

Professor McCulloch explains more about the expedition.

Click here to watch

ABC News story – Perth Canyon research could provide crucial climate change information, researchers say…

Click here to read more…

The Conversation – we are finally learning the Perth Canyon’s deep secrets…

Click here to read more…

 Expedition blogs – Schmidt Ocean Institute

Blog post 1 – Exploring the unknown – just fifty kilometres away from Western Australia’s capital city  read more…

Blog post 2 – First impressions, exploring RV Falkor… read more 

Blog post 3 – We’re at sea!… read more

Blog post 4 – Everything you wanted to know about ROV Comanche… read more

Blog post 5 – The secret world of deep sea corals… read more

Blog post 6 – A first glimpse of diversity of life in the Perth Canyon… read more

Blog post 7 – Amazing life one mile below the surface… read more

Blog post 8 – living at the edge – An acidifying ocean… read more

Blog post 9 – A deep sea love story… read more

Blog post 10 – Perth Canyon, a marine hot spot in a desert ocean… read more

Blog post 11 – Coral skeletons as archives of ocean change… read more


Australian Research Council Pandora

Partner Research Institutions

Partner Partner Partner Partner
Coral Reef Studies

ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia

Phone: 61 7 4781 4000
Email: info@coralcoe.org.au