Fish diet heats up marine biodiversity hotspot
Scientists have discovered a never-before-seen biodiversity pattern of coral reef fishes that suggests some fishes might be exceptionally vulnerable to environmental change. A new study shows plank
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au
Researchers in Queensland have found that where baby corals choose to settle is influenced by ocean temperature and the presence of their symbiotic algae in the water.
Warmer than normal maximum temperatures are known to have a negative impact on the reproduction and survival of some corals. The researchers wanted to find out how a cooler climate, similar to that found south of the Great Barrier Reef, would affect coral larvae settlement.
“We were interested to see how temperature influenced the selection of where corals chose to settle,” says Dr Eugenia Sampayo from the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) at the University of Queensland.
“At colder than average ambient temperatures we found that the larvae settled on more exposed surfaces where they were more likely to be damaged or removed entirely by fish.”
Coral larvae actively search out a place to settle using a range of sensory cues. Once in place they can’t move, so a poor choice of location increases the risk of death.
As part of the experiment researchers exposed larvae from coral commonly found on the Great Barrier Reef, Acropora millepora, to several different temperatures; including normal temperatures for the Great Barrier Reef and cooler temperatures similar to those experienced south of the Great Barrier Reef.
Coral Spawning. Image: Natalia Winkler
Under normal conditions, the larvae prefer to settle on surfaces covered in crustose coralline algae, but the researchers found larvae in the cooler water were less likely to choose such a surface, reducing their chance of a successful settlement.
The researchers also examined the influence of dinoflagellates (Symbiodinium), microscopic single celled organisms that live inside coral tissue once it has settled. This so-called symbiotic relationship is essential to the survival of corals in tropical oceans.
“Perhaps the most surprising result is that the presence of these symbionts in the water also influenced whether the coral larvae settled on the algae encrusted surfaces or not,” says study lead author, Natalia Winkler from the Coral CoE.
“The fact that the symbionts can influence larval settlement without actually being inside the coral tissue highlights just how important the symbionts are for corals,” Ms Winkler says
Dr Sampayo adds the results suggest a link between crustose coralline algae and the symbionts.
“If symbionts cluster near favorable locations, the coral larvae kill two birds with one stone by finding a good spot to settle and a concentrated source of symbionts, which are normally sparse in the water,” Dr Sampayo says.
“We have discovered a previously unknown biological control over coral settlement, one that is likely to be influenced by warming oceans and that can change how corals select their life-long position on the reef.”
Paper
Symbiodinium identity alters the temperature-dependent settlement behaviour in Acropora millepora coral larvae before onset of symbiosis by Winkler NS, Pandolfi JM, Sampayo EM is published in the journal, Proceedings of the Royal Society London B. http://dx.doi.org/10.1098/rspb.2014.2260
Contacts
Dr Eugenia Sampayo, Coral CoE, +61 (0) 7 3365 2729, e.sampayo@uq.edu.au
Natalia Winkler, Coral CoE, natalia.s.winkler@gmail.com
Eleanor Gregory, Communications Manager, +61 (0) 428 785 895,
Scientists have discovered a never-before-seen biodiversity pattern of coral reef fishes that suggests some fishes might be exceptionally vulnerable to environmental change. A new study shows plank
Scientists say stable seafood consumption amongst the world’s poorer coastal communities is linked to how local habitat characteristics influence fishing at different times of the year. In the co
An international group of scientists is predicting markedly different outcomes for different species of coral reef fishes under climate change – and have made substantial progress on picking the ‘
New research has found as climate change causes the world’s oceans to warm, baby sharks are born smaller, exhausted, undernourished and into environments that are already difficult for them to survi
Abstract: The vast majority of reef fishes have a life history consisting of a pelagic larval phase of typically 20 to 60 days, followed by larval settlement where they remain through their juvenile a
Abstract: Social networks have been and remain important across the Pacific Islands, and beyond, for building and maintaining social-ecological resilience. However, there is little quantitative infor
Abstract: The global conservation community is comprised of a range of organisations, processes, and professionals. Given the diversity of these actors, and the complexity of the systems that conser
Abstract: Seasons create a rhythm in nature and, by extension, in the lives of people who depend directly on natural resources. However, our understanding of how seasons affect the ways that people
Abstract: Oceanic shark populations have declined 77% over the past 60 years as a result of overexploitation in fisheries. However, sustainable shark management is limited to a few developed nations
Abstract: Vertigo3 is a new class of small, fast and agile ‘true-flight’ underwater glider, purposely designed for robotic, artificial intelligence-assisted broadscale marine surveys, and capable
Abstract: Recurrent marine heat waves are leading to widespread coral bleaching, transforming the structure and function of tropical coral reefs. Past bleaching events have highlighted large variatio
Abstract: Shallow-water tropical seascapes typically include a range of habitat types such as coral reefs, mangroves, macroalgal and seagrass beds. These habitats can occur in close proximity and are
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au