Michael Bode
Former Research Fellow
ARC Postdoctoral Fellow (2009-2012)
ARC DECRA (2013-2016)
PhD mathematics, University of Queensland (2008)
James Cook University
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au
Former Research Fellow
ARC Postdoctoral Fellow (2009-2012)
ARC DECRA (2013-2016)
PhD mathematics, University of Queensland (2008)
James Cook University
I am currently a Principal Research Fellow in Computational Biology. My work focuses on spatial ecology, particularly the dispersal ecology of coral reef ecosystems, and conservation science, particularly situations where multiple decision-makers are active in the landscape.
I graduated from James Cook University in maths and physics, where I became interested in biophysical oceanography during my honours research. After teaching secondary mathematics in Malawi and working as a research assistant with Prof. Sean Connolly, I began a PhD in mathematics at the University of Queensland, under Prof. Hugh Possingham. My thesis research ranged from the management of marine fisheries to the allocation of fungible global conservation funds, but it was drawn together by a focus on repeatable mathematical tools, and by tight collaborations with conservation organisations ranging from The Nature Conservancy to state government departments. After submitting his thesis Michael was employed on two ARC fellowships that focused on insular and marine conservation, and worked as an investigator on a series of collaborative research centres, including the ARC Centre of Excellence for Environmental Decisions, and the NESP Threatened Species Hub. Michael’s research focuses on the development of quantitative methods for both ecology and conservation, focusing on large-scale spatial ecology, uncertain ecosystem dynamics, and conservation decision-making.
Dispersal Ecology: I’m interested in a broad range of questions about the ecological, evolutionary, and conservation implications of larval dispersal in marine organisms. I’m particularly fascinated by (1) measuring dispersal over a range of scales, and (2) investigating how large-scale, complex dispersal patterns govern the ecology and bioeconomics of fisheries.
Measurement: Larval dispersal is difficult to observe and expensive to measure, and we need analytic tools that can make sense of limited empirical data. This means netter mathematical techniques, and more accurate oceanographic models.
Implications: Larval dispersal is spatially complex and temporally variable, and it is therefore difficult to understand how it will affect the broader socio-ecological system. Using metapopulation and metacommunity models, we can get some idea of how regional substructure and asymmetry in dispersal patterns affects how populations fluctuate, and how they interact with each other.
Larval dispersal also complicates the management of exploited marine species. Dispersal creates variable connections between disparate populations, creating computational complications and economic externalities.
Conservation: We spend a lot of time in conservation science developing new optimisation methods and incorporating ever-more high resolution spatial data. At best, these new methods squeeze a few percentage points of efficiency out of our optimal solution. Instead, I think we should focus on more rich and realistic descriptions of the conservation system. Specifically, I’m interested in formulating and analysing theoretical conservation problems that explicitly consider (1) uncertainty, (2) dynamics, and (3) multiple and diverse conservation actors.
Uncertainty: How do we make efficient decisions when we know very little about many aspects of the conservation problem? What do the key stakeholders want to achieve? How effective are our proposed interventions, and how will the ecological system respond? How much funding do we have, and how long will it last for? Fundamental uncertainties make quantitative approaches to conservation science much harder, but also much more vital.
Dynamics: Conservation systems are built over long periods of time, funds are metered out in yearly doses, and ecosystems change at multiple timescales. However, most of our quantitative methods imagine that conservation plans are rolled out overnight, and that the results are delivered with equal rapidity. How do we plan efficient actions in such a responsive system?
Multiple actors: Quantitative conservation science generally makes top-down, authoritarian assumptions. Conservation plans are implemented by a central manager, threatened species are managed by a single authority, protected areas are inviolable. In reality, the conservation ecosystem involves large numbers of independent and partially-independent actors. As well as independent non-conservation actors (e.g., land developers, mining companies), the conservation sector itself is diverse and independent. How does this reality affect conservation outcomes? How should planning proceed when there are multiple loci of action? How do we encourage cooperation between multiple conservation NGOs with divergent goals and separate funding streams?
James Cook University researchers have found brightly coloured fish are becoming increasingly rare as coral declines, with the phenomenon likely to get worse in the future. Christopher Hemingson, a
Researchers working with stakeholders in the Great Barrier Reef region have come up with ideas on how groups responsible for looking after the reef can operate more effectively when the next bleaching
A new study has delivered a stark warning about the impacts of urban growth on the world’s coral reefs. As coastal developments expand at pace around the world, a year-long study of coral on a reef
Alarming new research shows global warming of 1.5°C relative to pre-industrial levels will be catastrophic for almost all coral reefs – including those once thought of as refuges. Associate Profes
Abstract: Molecular approaches have revolutionised our understanding of the systematics and evolution of most branches on the tree of life, including corals. Over the last twenty-five years molecula
Abstract: Outbreaks of crown-of-thorns starfish (COTS) are a major driver of coral decline across the Great Barrier Reef (GBR) and compound upon the impacts of increasingly frequent and severe coral
Abstract: Being a new staff member at JCU, I will start with a short overview of my research. Next I will zoom in on a specific topic that I have been interested in for a long time: the impact of e
Abstract: The harsh truth is that, despite exciting innovations and increases in activity, ocean conservation is not succeeding, at least not fast enough. This is my conclusion from the last decad
This talk is the last of the parachute science seminar series organized by the ARC CoE Justice, Equity, Diversity and Inclusion (JEDI) committee. Abstract Universities and institutions across th
This talk is the second of three on parachute science being organized by the ARC CoE Justice, Equity, Diversity and Inclusion (JEDI) committee. Abstract For millenia, Traditional Owners have hel
This talk is the first of three on parachute science being organized by the ARC CoE Justice, Equity, Diversity and Inclusion (JEDI) committee. Abstract Parachute science is the practice whereby
ABSTRACT Climate change loss and damage is known as the “third pillar” of international climate governance in addition to mitigation and adaptation. Although there is no agreed upon definition,
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au