Maja Adamska
Associate Professor, ARC Future Fellow and Program 3 leader
Australian National University
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au
Associate Professor, ARC Future Fellow and Program 3 leader
Australian National University
Maja Adamska studied biology, with special interest in embryology and evolutionary biology, at the Jagiellonian University in Krakow, Poland. To obtain training in modern developmental biology, she moved to Germany to work with Eva Bober and Thomas Braun on function of homeobox genes in inner ear development, using a variety of vertebrate models from medaka fish to mice in her PhD project. During postdoctoral work at the University of Michigan in Miriam Meisler’s laboratory she followed complex crosses of mouse mutants to reveal genetic interactions involved in limb patterning. At this time, she became convinced that origin of complex developmental toolkits and processes is as exciting as their current function, so in the next step she joined Bernie Degnan’s group at the University of Queensland to analyze developmental signaling pathways in the first sequenced sponge, Amphimedon queenslandica. This work revealed surprising similarities in patterning of sponge and higher animal embryos.
Maja if the leader of Program 3 in the ARC Centre of Excellence for Coral Reef Studies. From 2007-2015, she was a group leader at the Sars International Centre for Marine Molecular Biology in Bergen, Norway. She is now a Group Leader and Associate Professor in the Research School of Biology, Australian National University. Her group uses calcareous sponges to gain insight into the evolutionary origin of a variety of key developmental processes, including segregation of germ layers and axial patterning of embryos and adults. Maja is also interested in major transitions in animal evolution, such as emergence of multicellularity and morphological complexity, and their relationship to genomic complexity.
New research has found as climate change causes the world’s oceans to warm, baby sharks are born smaller, exhausted, undernourished and into environments that are already difficult for them to survi
A new study shows the coastal protection coral reefs currently provide will start eroding by the end of the century, as the world continues to warm and the oceans acidify. A team of researchers led
A team of scientists led by the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) won one of the nation’s top science awards at tonight’s ‘Oscars of Australian science’, the Eureka P
An analytical tool will be used to assess the climate risks facing historic World Heritage sites in Africa—the ruins of two great 13th century ports and the remains of a palace and iron-making indus
Abstract: It is a little over a decade since research commenced into the effects of anthropogenic ocean acidification on marine fishes. In that time, we have learned that projected end-of-century
Abstract: Increased uptake of carbon dioxide from the atmosphere has caused the world’s ocean to become more acidic. Different marine habitats are known to have varying ranges of CO2 across mul
Abstract: The Allen Coral Atlas (http://allencoralatlas.org) partnership uses high-resolution satellite imagery, machine learning, and field data to map and monitor the world’s coral reefs at unp
Abstract: Climate change is causing the average surface temperature of the oceans to rise and increasing the frequency and intensity of marine heatwaves. In addition, absorption of additional CO2
Abstract: Marine environments are a concealing medium, where observations of natural fish behavior are challenging. In particular, the geographic and depth distributions of migratory top predators ar
Abstract: Invasive species management can be the the subject of debate in many countries due to conflicting ecological, ethical, economic, and social reasons, especially when dealing with a species s
Abstract: Ocean acidification, the increase in seawater CO2 with all its associated consequences, is relatively well understood in open oceans. In shelf seas such as the Great Barrier Reef, processe
Abstract: The backdrop of legends and movies, the deep sea has always been unfathomable because we had no idea what existed there. Once thought to be barren of life, we now know this couldn’t be
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au