Fish diet heats up marine biodiversity hotspot
Scientists have discovered a never-before-seen biodiversity pattern of coral reef fishes that suggests some fishes might be exceptionally vulnerable to environmental change. A new study shows plank
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au
Corals growing in high-latitude reefs in Western Australia can regulate their internal chemistry to promote growth under cooler temperatures, according to new research at the ARC Centre of Excellence for Coral Reef Studies at The University of Western Australia.
The study, published today in Proceedings of the Royal Society B, suggests that ocean warming may not necessarily promote faster rates of calcification of corals on sub-tropical reefs where temperatures are currently cool (lower than 18C).
Lead author Claire Ross said the study was carried out over two years in Western Australia’s Bremer Bay, 515km south-east of Perth in the Great Southern region. Bremer Bay is a renowned diving, snorkelling and tourism hot spot due to its stunning crystal clear waters, white sand and high marine biodiversity.
“For two years we used cutting-edge geochemical techniques to link the internal chemistry of the coral with how fast the corals were growing in a high-latitude reef,” Ms Ross said.
“These high-latitude reefs (above 28 degrees north and below 28 degrees south) have less light and lower temperatures compared to the tropics, and essentially they provide natural laboratories for investigating the limits for coral growth.”
Ms Ross said the researchers expected the corals to grow slower during winter because the water was colder and light levels lower but they were surprised to find the opposite pattern.
“We were able to link the remarkable capacity for cold-water corals to maintain high growth during winter to the regulation of their internal chemistry,” she said.
“We also found that there was more food in the water for corals during winter compared to summer, indicating that (in addition to internal chemical regulation) corals may feed more to sustain growth.”
Coral reefs are one of world’s most valuable natural resources, providing a habitat for many ocean species, shoreline protection from waves and storms, as well as being economically important for tourism and fisheries.
However, the capacity for corals to build their skeletons is under threat due to CO2-driven climate change. The effects of climate change on coral reefs are likely to vary geographically, but relatively little is known about the growth rates of reefs outside of the tropics.
“Our study is unique because it is among the first to fully decipher the corals’ internal chemistry,” Ms Ross said. “The findings of this study help better understand and predict the future of high-latitude coral reefs under CO2-driven climate change.”
Images and video available here
Citation:Ross, CL, Schoepf, V, DeCarlo, TM, McCulloch, MT (2018). Mechanisms and seasonal drivers of calcification in the temperate coral Turbinaria reniformis at its latitudinal limits. Proceedings of the Royal Society B. Volume 285 (1879). DOI: 10.1098/rspb.2018.0215
MEDIA REFERENCE
Claire Ross
ARC Centre of Excellence for Coral Reef Studies, UWA School of Earth Sciences
(+61 4) 32 272 636
David Stacey
UWA Media and Public Relations Manager
(+61 8) 6488 3229 / (+61 4) 32 637 716
Catherine Naum
Communications Mgr, ARC Centre of Excellence for Coral Reef Studies
(+61 7) 4781 6067/ (+61 4) 28785 895
Scientists have discovered a never-before-seen biodiversity pattern of coral reef fishes that suggests some fishes might be exceptionally vulnerable to environmental change. A new study shows plank
Scientists say stable seafood consumption amongst the world’s poorer coastal communities is linked to how local habitat characteristics influence fishing at different times of the year. In the co
An international group of scientists is predicting markedly different outcomes for different species of coral reef fishes under climate change – and have made substantial progress on picking the ‘
New research has found as climate change causes the world’s oceans to warm, baby sharks are born smaller, exhausted, undernourished and into environments that are already difficult for them to survi
Abstract: The vast majority of reef fishes have a life history consisting of a pelagic larval phase of typically 20 to 60 days, followed by larval settlement where they remain through their juvenile a
Abstract: Social networks have been and remain important across the Pacific Islands, and beyond, for building and maintaining social-ecological resilience. However, there is little quantitative infor
Abstract: The global conservation community is comprised of a range of organisations, processes, and professionals. Given the diversity of these actors, and the complexity of the systems that conser
Abstract: Seasons create a rhythm in nature and, by extension, in the lives of people who depend directly on natural resources. However, our understanding of how seasons affect the ways that people
Abstract: Oceanic shark populations have declined 77% over the past 60 years as a result of overexploitation in fisheries. However, sustainable shark management is limited to a few developed nations
Abstract: Vertigo3 is a new class of small, fast and agile ‘true-flight’ underwater glider, purposely designed for robotic, artificial intelligence-assisted broadscale marine surveys, and capable
Abstract: Recurrent marine heat waves are leading to widespread coral bleaching, transforming the structure and function of tropical coral reefs. Past bleaching events have highlighted large variatio
Abstract: Shallow-water tropical seascapes typically include a range of habitat types such as coral reefs, mangroves, macroalgal and seagrass beds. These habitats can occur in close proximity and are
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au