Future too warm for baby sharks
New research has found as climate change causes the world’s oceans to warm, baby sharks are born smaller, exhausted, undernourished and into environments that are already difficult for them to survi
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au
Researchers have today released ground-breaking findings that dismiss the ‘Neutral Theory of Biodiversity’. The theory has dominated biodiversity research for the past decade, and been advocated as a tool for conservation and management efforts.
Professor Sean Connolly from the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) at James Cook University (JCU) is the lead author of the international study, which he says overturns the long-used theory by employing a novel mathematical method. It is the largest study of its kind, covering a broad range of marine ecosystems on Earth.
“The study has important implications for how marine conservation areas are managed,” Professor Connolly says.
“The aim of neutral theory is to explain diversity and the relative abundances of species within ecosystems. However, the theory has an important flaw: it fails to capture how important the highly abundant species that dominate marine communities are.”
Professor Connolly explains that it’s often the really abundant species that deliver substantial ecosystem services like providing habitat for fishes, or keeping reefs clear of seaweeds. “These species have unique features that allow them to be so abundant, and to play those key roles,” he says.
But when neutral theory underpins marine conservation, species are treated as swappable. “So the theory implies that, if you lose a really abundant species, then another can simply increase in abundance to take its place.”
Using neutral theory, species become common or rare as a consequence of random processes: chance variation in who a predator happens to eat, or whose dispersing offspring happen to land on a vacant bit of real estate on the seafloor. This study shows that these random processes are not strong enough to explain the large differences between common and rare species.
Professor Connolly points to Caribbean coral reefs as an example of why this problem with neutral theory can be important. “Until the 1970s, these reefs were dominated by two species that were close relatives of the branching corals that dominate the reefs of the Great Barrier Reef. When these species were nearly lost as a consequence of overfishing and other forms of reef degradation, no other coral species increased to fill the gap,” he says.
“Those species had particular traits that made them so abundant, and therefore critical to a functioning healthy reef system,” continues Dr Julian Caley a co-author of the study from the Australian Institute of Marine Studies (AIMS).
“Both biodiversity theory and conservation managers need to be alert to these characteristics, because it is often the common species, not the rare ones, that are most important to healthy ecosystems,” Dr Caley explains.
“The results of this study are also unprecedented in their remarkable consistency across a very large set of vastly different ecological systems throughout the world’s oceans,” he adds.
The study looks at 14 different marine ecosystems sampled at 1185 locations across the globe. The datasets range from the polar to tropical regions, from deep-sea to shallow coral reef environments and intertidal zones. It includes vertebrates as well as invertebrates, from plankton, to clams, to coral reef fishes.
To overturn neutral theory, the study used a novel mathematical method that identified common predictions of the different models that form the theory. These predictions were then tested against this wide array of marine ecosystems.
‘Commonness and rarity in the marine biosphere’ by Sean R. Connolly, M. Aaron MacNeil, M. Julian Caley, Nancy Knowlton, Ed Cripps, Mizue Hisano, Loïc Thibaut, Bhaskar D. Bhattacharya, Lisandro Benedetti-Cecchi, Russell E. Brainard, Angelika Brandt, Fabio Bulleri, Kari E. Ellingsen, Stefanie Kaiser, Ingrid Kröncke, Katrin Linse, Elena Maggi, Timothy D. O’Hara, Laetitia Plaisance, Gary C. B. Poore, Santosh K. Sarkar, Kamala K. Satpathy, Ulrike Schückel, Alan Williams, and Robin S. Wilson appears in Proceedings of the National Academy of Sciences.
The full paper is available via: PNASnews@nas.edu
CONTACTS:
• Professor Sean Connolly, Coral CoE, (07) 4781 4242, sean.connolly@jcu.edu.au
• Dr Julian Caley, AIMS, 0439 472 148, j.caley@aims.gov.au
• Jenny Lappin, Coral CoE (07) 4781 4222, jennifer.lappin@jcu.edu.au
• Melissa Lyne, media liaison, 0415 514 328, melissa.lyne@gmail.com
New research has found as climate change causes the world’s oceans to warm, baby sharks are born smaller, exhausted, undernourished and into environments that are already difficult for them to survi
A new study shows the coastal protection coral reefs currently provide will start eroding by the end of the century, as the world continues to warm and the oceans acidify. A team of researchers led
A team of scientists led by the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) won one of the nation’s top science awards at tonight’s ‘Oscars of Australian science’, the Eureka P
An analytical tool will be used to assess the climate risks facing historic World Heritage sites in Africa—the ruins of two great 13th century ports and the remains of a palace and iron-making indus
Abstract: It is a little over a decade since research commenced into the effects of anthropogenic ocean acidification on marine fishes. In that time, we have learned that projected end-of-century
Abstract: Increased uptake of carbon dioxide from the atmosphere has caused the world’s ocean to become more acidic. Different marine habitats are known to have varying ranges of CO2 across mul
Abstract: The Allen Coral Atlas (http://allencoralatlas.org) partnership uses high-resolution satellite imagery, machine learning, and field data to map and monitor the world’s coral reefs at unp
Abstract: Climate change is causing the average surface temperature of the oceans to rise and increasing the frequency and intensity of marine heatwaves. In addition, absorption of additional CO2
Abstract: Marine environments are a concealing medium, where observations of natural fish behavior are challenging. In particular, the geographic and depth distributions of migratory top predators ar
Abstract: Invasive species management can be the the subject of debate in many countries due to conflicting ecological, ethical, economic, and social reasons, especially when dealing with a species s
Abstract: Ocean acidification, the increase in seawater CO2 with all its associated consequences, is relatively well understood in open oceans. In shelf seas such as the Great Barrier Reef, processe
Abstract: The backdrop of legends and movies, the deep sea has always been unfathomable because we had no idea what existed there. Once thought to be barren of life, we now know this couldn’t be
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au