1

People and ecosystems

Understanding of the links between coral reef ecosystems, the goods and services they provide to people, and the wellbeing of human societies.

2

Ecosystem dynamics: past, present and future

Examining the multi-scale dynamics of reefs, from population dynamics to macroevolution

3

Responding to a changing world

Advancing the fundamental understanding of the key processes underpinning reef resilience.

Coral Bleaching

Coral Bleaching

Coral Reef Studies

ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia

Phone: 61 7 4781 4000
Email: info@coralcoe.org.au

Menu Image Menu Image Menu Image Menu Image Menu Image Menu Image Menu Image
Menu
Facebook Twitter YouTube FlickR

Mystery of colour patterns of reef fish solved!

06
Dec 2018

Scientists have solved the mystery of why some closely-related species of an iconic reef fish have vastly different colour patterns, while others look very similar.

Innovative research led by scientists at the ARC Centre of Excellence for Coral Reef Studies based at James Cook University, examined the differences in appearance of 42 species of the butterflyfish.

They found that on reefs where closely related butterflyfish species ranges overlap, the differences in colour patterns between the two were most pronounced.

The team used high-resolution digital colour photographs to quantify colour patterns and explore how they were influenced by evolutionary processes.

“Our results show that, over millions of years, butterflyfishes have evolved the greatest diversity of visual markings when they live in the same area as other, closely related species,” said lead author and PhD student Christopher Hemingson.

“Crucially, we also found that this only happens when both species have ranges that are of similar sizes,” said Mr Hemingson.

“We were surprised to find that when one species’ range is a lot larger than the neighbouring species, the pattern is reversed – with the colour pattern of overlapping species found to be less different,” said co-author Dr Peter Cowman.

Professor David Bellwood, a co-author and senior investigator, noted that this is the first time geographic range dynamics have been shown to be an important predictor of colour differences among marine fish species.

“This research is the first of its kind to quantify colour and pattern differences simultaneously among butterflyfish species. It showed us that colour pattern differences can evolve very quickly among species (within 300,000 years) but then remain stable over millions of years,” said Professor Bellwood.

“Colour is far more complicated than just looking different from other species,” said Mr Hemingson.

“These colour patterns also depend specifically on what other species are also present. It is an interesting piece to the puzzle and may help explain why reef fishes are so colourful.”

The paper “Colour pattern divergence in reef fish species is rapid and driven by both range overlap and symmetry” is published in the journal Ecology Letters.

Citation: Christopher R. Hemingson, Peter F. Cowman, Jennifer R. Hodge, &  David R. Bellwood (2018) Colour pattern divergence in reef fish species is rapid and driven by both range overlap and symmetry Ecology Letters DOI: 10.1111/ele.13180

Images available here. Please attribute as indicated.

Contact

Mr Christopher Hemingson
ARC Centre of Excellence for Coral Reef Studies
James Cook University, Townsville, QLD, 4811, Australia
Email: christopher.hemingson@my.jcu.edu.au

Dr Peter Cowman
ARC Centre of Excellence for Coral Reef Studies
James Cook University, Townsville, QLD, 4811, Australia
Office: +61 7 4781 3194
Email: peter.cowman@jcu.edu.au

Prof. David Bellwood
ARC Centre of Excellence for Coral Reef Studies
James Cook University, Townsville, QLD, 4811, Australia
Office: +61 7 4781 4447
Email: david.bellwood@jcu.edu.au

For More Information

Catherine Naum
Communications Manager
ARC Centre of Excellence for Coral Reef Studies
T: +61 (7) 4781 6067
M: +61 (0) 428 785 895
E: catherine.naum1@jcu.edu.au

Two closely related species living together need different colours to stand out.  The Reticulated Butterflyfish (Chaetodon reticulatus; left) and Meyer’s Butterflyfish (Chaetodon meyeri; right) are close relatives that have overlapping ranges in the Indo-Pacific and are both found on the Great Barrier Reef. Despite only being separate species for less than a million years (a blink of an eye in evolutionary time), they have evolved very different colour patterns making them stand apart from each other on reefs where they are both found. Credit: Tane Sinclair-Taylor
Two closely related species living together need different colours to stand out. The Reticulated Butterflyfish (Chaetodon reticulatus; left) and Meyer’s Butterflyfish (Chaetodon meyeri; right) are close relatives that have overlapping ranges in the Indo-Pacific and are both found on the Great Barrier Reef. Despite only being separate species for less than a million years (a blink of an eye in evolutionary time), they have evolved very different colour patterns making them stand apart from each other on reefs where they are both found. Credit: Tane Sinclair-Taylor

Seminars

More
Australian Research Council Pandora

Partner Research Institutions

Partner Partner Partner Partner
Coral Reef Studies

ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia

Phone: 61 7 4781 4000
Email: info@coralcoe.org.au