1

People and ecosystems

Understanding of the links between coral reef ecosystems, the goods and services they provide to people, and the wellbeing of human societies.

2

Ecosystem dynamics: past, present and future

Examining the multi-scale dynamics of reefs, from population dynamics to macroevolution

3

Responding to a changing world

Advancing the fundamental understanding of the key processes underpinning reef resilience.

Coral Bleaching

Coral Bleaching

Coral Reef Studies

ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia

Phone: 61 7 4781 4000
Email: info@coralcoe.org.au

Menu Image Menu Image Menu Image Menu Image Menu Image Menu Image Menu Image
Menu
Facebook Twitter YouTube FlickR

Extinction predictor ‘will help protect coral reefs’

15
Feb 2011

More than a third of coral reef fish species are in jeopardy of local extinction from the impacts of climate change on coral reefs, a new scientific study has found.

(Local extinction refers to the loss of species from individual locations, while they continue to persist elsewhere across their range.)

Degraded coral reef following coral bleaching

A new predictive method developed by an international team of marine scientists has found that a third of reef fishes studied across the Indian Ocean are potentially vulnerable to increasing stresses on the reefs due to climate change.

The method also gives coral reef managers vital insights to better protect and manage the world’s coral reefs, by showing that local and regional commitment to conservation and sustainable fisheries management improves prospects for coral recovery and persistence between storms and bleaching events.

The team applied their ‘extinction risk index’ to determine both local and global vulnerability to climate change and human impacts. They tested the method by comparing fish populations before and after the major 1998 El Nino climate event which caused massive coral death and disruption across the Indian Ocean.

In all, 56 of the 134 coral fish species studied were found to be at risk from loss of their habitat, shelter and food sources caused by climate change. Those most in jeopardy were the smaller fishes with specialised eating and sheltering habits. Because most of these species have wide geographic ranges and often quite large local populations, few were at particular risk of global extinction.

“The loss of particular species can have a critical effect on the stability of an entire ecosystem – and our ability to look after coral reefs depends on being able to predict which species or groups of fish are most at risk,” explains lead author Dr Nick Graham of the ARC Centre of Excellence in Coral Reef Studies and James Cook University. “Until now, the ability to do this has been fairly weak.”

“For example, we know that the loss of seaweed-eating grazing fishes can lead to coral reefs which have suffered some other form of disturbance being replaced by weeds. Protecting these fish, on the other hand, gives the corals a much better chance to recover.

Parrotfish cleaning the reef for coral settlement

“Where there is a widespread death of corals from a climate-driven event such as bleaching, the fish most affected are the ones that feed or shelter almost exclusively on coral. However when corals die off and the reef structure collapses, small reef fish generally are much more exposed to predators.

“By understanding which species and groups of fish are most at risk, we can better manage coral reefs and fish populations to ensure their survival in times of increasing human and climate pressure,” adds Dr Shaun Wilson of the Western Australian Department for Environment and Conservation.

The study does, however, offer encouragement by showing that the fish most at risk from climate change are seldom those most at risk from overfishing or other direct human impacts, pointing to scope to manage reef systems and fishing effort in ways that will protect a desirable mix of fish species that promote ecosystem stability.

“Critically, the species of fish that are important in controlling seaweeds and outbreaks of deleterious invertebrate species are more vulnerable to fishing than they are to climate change disturbances on coral reefs. This is encouraging, since local and regional commitment to fisheries management action can promote coral recovery between disturbances such as storms and coral bleaching events,” explains Dr Wilson.

They conclude that identifying the fish species most at risk and most important to ecosystem stability and then managing coral reefs to maintain their populations will help ‘buy time’ while the world grapples with the challenge of limiting carbon emissions and the resulting climate change.

The team adds that their novel approach to calculating extinction risk has wider application to conservation management beyond coral reef ecosystems and can readily apply to other living organisms and sources of stress.

Anemone fish in a bleached anemone

Their paper “Extinction vulnerability of coral reef fishes” by Nicholas A. J. Graham, Pascale Chabanet, Richard D. Evans, Simon Jennings , Yves Letourneur, M. Aaron MacNeil, Tim R. McClanahan, Marcus C. Öhman, Nicholas V. C. Polunin and Shaun K. Wilson appears in the latest issue of the journal Ecology Letters.

More information:
Dr Nick Graham, CoECRS and JCU, +61 7 4781 6291 or +61 0466 432 188
Dr Shaun Wilson, DEC, +61 8 9219 9806 or +61 0400121175
Jenny Lappin, CoECRS, +61 7 4781 4222 or +61 0417 741 638
Jim O’Brien, James Cook University Media Office, +61 7 4781 4822 or +61 0418 892449

CoECRS are proud sponsors of the 12th International Coral Reef Symposium, Cairns:  9-13 July 2012.

Seminars

More
Australian Research Council Pandora

Partner Research Institutions

Partner Partner Partner Partner
Coral Reef Studies

ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia

Phone: 61 7 4781 4000
Email: info@coralcoe.org.au