Future too warm for baby sharks
New research has found as climate change causes the world’s oceans to warm, baby sharks are born smaller, exhausted, undernourished and into environments that are already difficult for them to survi
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au
Using a world-first scientific discovery, Australian researchers are developing a stress-test for coral, to measure how coral reefs are being impacted by pressures from climate change and human activity.
The scientists have found hemoglobin genes in the microalgae which live symbiotically with coral, which may provide a readout on how stressed a particular coral is – and how likely it is to bleach and die.
Coral bleaching occurs when the symbiotic algae abandon the coral due to changes happening in the environment such as high water temperatures or pollution and, deprived of their main energy source, the corals whiten and potentially perish. Bleaching has hit more than half of the Great Barrier Reef in recent years, as well as a majority of coral reefs around the world.
“Despite the importance of coral reefs to hundreds of millions of people worldwide, we still do not clearly understand how well they can cope with changed conditions of climate and environment they now face,” explains Professor Ove Hoegh-Guldberg of the ARC Centre of Excellence for Coral Reef Studies (CoECRS).
“In exploring the genetic make-up of both corals and their symbiotic algae, we have found hemoglobin-like proteins that respond rapidly and dramatically to temperature and nutrient stresses,” says lead author Dr Nela Rosic of The University of Queensland.
Most people know hemoglobin as the red material that carries oxygen around the body in our blood supply, but in plants and algae it serves a slightly different function, mopping up spare oxygen and toxic gases before they can harm the plant. In corals and their algae it may also form a vital part of their day-night energy storage system.
“When the coral undergo temperature stress, this system goes into overdrive and hemoglobin genes are expressed at a higher level. Due to its sensitive nature, hemoglobin has a potential to be used as a stress biomarker. This, for the first time, gives us a clear readout of stress levels in the corals and their symbiotic algae,” Dr Rosic explains.
Professor Hoegh-Guldberg says the discovery allows crucial new insights into the physiology of bleaching at the molecular level.
“Potentially this can also be used by coral managers and even industries which depend on coral, to monitor the condition of their reefs,” he explains. “By monitoring stress levels in the coral’s symbiotic relationship, we can potentially explore whether a coral is more vulnerable to bleaching and death. There may then be strategies we can pursue to reduce the pressure.”
However both scientists caution that the primary stress on corals is coming from high ocean temperatures due to global warming – and this can only be addressed by humans cutting their carbon emissions.
Prof. Hoegh-Guldberg adds that the test could also be used to monitor the success of improved management of catchments and other human impacts, in terms of its effect on the corals. “It will be one of a range of measures we can use to understand whether steps taken to improve conditions surrounding coral reefs are really working or not. This can have a number of potential uses as we strive to reduce stress through better management of coral reefs.”
The scientists say that the existence of hemoglobin-like proteins in coral zooxanthellae (the symbiotic algae) highlights the common evolutionary ancestry of single-celled plants and higher animals, including humans.
Their paper “New-old hemoglobin-like proteins of symbiotic dinoflagellates” by Nedeljka N. Rosic, William Leggat, Paulina Kaniewska, Sophie Dove and Ove Hoegh-Guldberg appears in the journal Ecology and Evolution.
More information:
Dr Nela Rosic, UQ, ph +61 (0)7 3346 9576 or +61 (0)401 173 990
Prof. Ove Hoegh-Guldberg, CoECRS and UQ, ph +61 (0)7 3365 1156 or +61 (0)401 106 604
Jenny Lappin, CoECRS, +61 (0)7 4781 4222
Lesley Whitteker, UQ media, +61 7 3365 2339 or 0417 496 397 l.whitteker@uq.edu.au
New research has found as climate change causes the world’s oceans to warm, baby sharks are born smaller, exhausted, undernourished and into environments that are already difficult for them to survi
A new study shows the coastal protection coral reefs currently provide will start eroding by the end of the century, as the world continues to warm and the oceans acidify. A team of researchers led
A team of scientists led by the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) won one of the nation’s top science awards at tonight’s ‘Oscars of Australian science’, the Eureka P
An analytical tool will be used to assess the climate risks facing historic World Heritage sites in Africa—the ruins of two great 13th century ports and the remains of a palace and iron-making indus
Abstract: It is a little over a decade since research commenced into the effects of anthropogenic ocean acidification on marine fishes. In that time, we have learned that projected end-of-century
Abstract: Increased uptake of carbon dioxide from the atmosphere has caused the world’s ocean to become more acidic. Different marine habitats are known to have varying ranges of CO2 across mul
Abstract: The Allen Coral Atlas (http://allencoralatlas.org) partnership uses high-resolution satellite imagery, machine learning, and field data to map and monitor the world’s coral reefs at unp
Abstract: Climate change is causing the average surface temperature of the oceans to rise and increasing the frequency and intensity of marine heatwaves. In addition, absorption of additional CO2
Abstract: Marine environments are a concealing medium, where observations of natural fish behavior are challenging. In particular, the geographic and depth distributions of migratory top predators ar
Abstract: Invasive species management can be the the subject of debate in many countries due to conflicting ecological, ethical, economic, and social reasons, especially when dealing with a species s
Abstract: Ocean acidification, the increase in seawater CO2 with all its associated consequences, is relatively well understood in open oceans. In shelf seas such as the Great Barrier Reef, processe
Abstract: The backdrop of legends and movies, the deep sea has always been unfathomable because we had no idea what existed there. Once thought to be barren of life, we now know this couldn’t be
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au