Future too warm for baby sharks
New research has found as climate change causes the world’s oceans to warm, baby sharks are born smaller, exhausted, undernourished and into environments that are already difficult for them to survi
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au
Scientists have discovered that the presence of large fish predators can reduce stress on baby fish.
Researchers from the ARC Centre of Excellence for Coral Reef Studies at James Cook University and the University of Glasgow have found that physiological stress on baby fish can be reduced by more than a third if large predatory fish are around to scare off smaller, medium-sized predators, known as mesopredators.
“Previous studies have proven that the sight of large predators can reduce the activity of mesopredators,” explains JCU’s Maria del Mar Palacios, lead author of the research. “But our study is the first to show that such behavioural control on mesopredators is strong enough to indirectly allow baby fish to reduce stress levels by more than 35 %.”
To obtain these results, scientists exposed baby damselfish to combinations of sensory cues (including visual and scent cues) from small and large predators.
Detailed measures of the behaviour and oxygen uptake (as proxy for “stress”) of the baby fish enabled researchers to understand the cascading effects that predators throughout the food chain can have on newly settled baby fish on the Great Barrier Reef.
JCU collaborator, Lauren Nadler, said the baby fish were very scared in the presence of mesopredators alone. However, all of the physiological stress disappeared if they added a large predator, which effectively suppressed all mesopredator activity. “By scaring the mesopredator, it seems as if the large predators are helping the baby fish keep calm and relaxed. They don’t need to worry anymore about the constant chases and threats from mesopredators”.
As with humans, it’s expected that a reduction in physiological stress should benefit their fitness and well-being.
“Animals have finite energy budgets, so by reducing the energy invested in anti-predator responses, baby fish should be able to invest more energy in growth and storage,” said Dr. Shaun Killen, a fish physiologist from the University of Glasgow who also collaborated on the study.
Professor Mark McCormick, who supervised the research, warned that although these findings are exciting from an ecological point of view, they could carry grave consequences for the balance of marine ecosystems.
“The ongoing overexploitation of large marine carnivores might allow an explosion of smaller, active predators that could not only kill, but also stress the population of baby fish that remain,” he said.
M.M. Palacios, S.S. Killen, L.E. Nadler, J.R. White &, M.I. McCormick. 2016. Top-predators negate the effect of mesopredators on prey physiology. Journal of Animal Ecology.
Maria del Mar Palacios (Currently in Melbourne)
M: 0423 911 692
E: maria.palaciosotero@my.jcu.edu.au
Lauren Nadler (Townsville)
T: 07 4781 5584
M: 0435 396 042
E: lauren.nadler@my.jcu.edu.au
Dr. Shaun Killen (Dr Killen is in the UK).
T: +44 0141 330 2898
E: Shaun.Killen@glasgow.ac.uk
http://bit.ly/1UdbKN0 – (Provided for one time use only with this release, not available for archiving. Please credit if photographer named in caption).
ARC Centre of Excellence for Coral Reef Studies
College of Marine & Environmental Sciences at James Cook University
Australian Coral Reef Society
Ian Potter Doctoral Fellowship at Lizard Island
Lizard Island Reef Research Foundation Doctoral Fellowship
Natural Environment Research Council, UK
New research has found as climate change causes the world’s oceans to warm, baby sharks are born smaller, exhausted, undernourished and into environments that are already difficult for them to survi
A new study shows the coastal protection coral reefs currently provide will start eroding by the end of the century, as the world continues to warm and the oceans acidify. A team of researchers led
A team of scientists led by the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) won one of the nation’s top science awards at tonight’s ‘Oscars of Australian science’, the Eureka P
An analytical tool will be used to assess the climate risks facing historic World Heritage sites in Africa—the ruins of two great 13th century ports and the remains of a palace and iron-making indus
Abstract: It is a little over a decade since research commenced into the effects of anthropogenic ocean acidification on marine fishes. In that time, we have learned that projected end-of-century
Abstract: Increased uptake of carbon dioxide from the atmosphere has caused the world’s ocean to become more acidic. Different marine habitats are known to have varying ranges of CO2 across mul
Abstract: The Allen Coral Atlas (http://allencoralatlas.org) partnership uses high-resolution satellite imagery, machine learning, and field data to map and monitor the world’s coral reefs at unp
Abstract: Climate change is causing the average surface temperature of the oceans to rise and increasing the frequency and intensity of marine heatwaves. In addition, absorption of additional CO2
Abstract: Marine environments are a concealing medium, where observations of natural fish behavior are challenging. In particular, the geographic and depth distributions of migratory top predators ar
Abstract: Invasive species management can be the the subject of debate in many countries due to conflicting ecological, ethical, economic, and social reasons, especially when dealing with a species s
Abstract: Ocean acidification, the increase in seawater CO2 with all its associated consequences, is relatively well understood in open oceans. In shelf seas such as the Great Barrier Reef, processe
Abstract: The backdrop of legends and movies, the deep sea has always been unfathomable because we had no idea what existed there. Once thought to be barren of life, we now know this couldn’t be
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au