People and ecosystems

Understanding of the links between coral reef ecosystems, the goods and services they provide to people, and the wellbeing of human societies.


Ecosystem dynamics: past, present and future

Examining the multi-scale dynamics of reefs, from population dynamics to macroevolution


Responding to a changing world

Advancing the fundamental understanding of the key processes underpinning reef resilience.

Coral Bleaching

Coral Bleaching

Coral Reef Studies

From 2005 to 2022, the main node of the ARC Centre of Excellence for Coral Reef Studies was headquartered at James Cook University in Townsville, Queensland (Australia)

Menu Image Menu Image Menu Image Menu Image Menu Image Menu Image Menu Image

How humans shape marine ecosystems by altering predator populations


Thursday 1st APRIL 11am (AEST)

https://jcu.zoom.us/j/84311571813 Password: 606445
Elizabeth Madin
Elizabeth Madin

Abstract: Humans have been harvesting predators and other creatures from the global oceans for millennia. More recently, conservation measures, such as marine reserves, have been established to restore populations depleted from this harvest. Both predator harvest and replenishment alter the top-down forces that predators exert on lower trophic levels over large spatial and temporal scales. This global-scale ‘experiment’ has led to a proliferation in recent years of research aimed at understanding how human alteration of predator populations shapes marine ecosystems. Two overarching pathways of cascading predator effects, known as trophic cascades, have been identified: lethal and risk-based. Striking examples exist of lethal trophic cascades caused by fisheries, where predator declines have caused increases in prey (e.g., herbivore) abundances and decreases in prey resources (e.g., algae). These examples have led to a general expectation that fisheries, and conversely marine reserves, may cause such changes. Conversely, only a few examples of risk-based trophic cascades due to fishing have been documented, yet a consensus is emerging that such effects should be common. We therefore synthesized existing data from a remote coral reef archipelago with a gradient of fishing pressure to explore whether lethal or risk-based trophic cascades are more likely to occur as a result of fishing. We found that overfishing can lead to distinct, cascading risk effects in natural ecosystems whose magnitude exceeds that of presumed lethal effects and likely accounts for previously unexplained findings. Most recently, we have explored if and how risk-based trophic cascades can fundamentally alter coral reef ecosystem structure. We found that this occurs over large spatial and temporal scales by affecting primary producer (e.g., algae and seagrass) distribution and, consequently, carbon storage. Our results collectively suggest that risk effects may provide a powerful lens through which to understand, document, and predict human impacts in oceans – from fisheries to climate change.

Biography: Dr. Elizabeth Madin is currently an Assistant Professor at the Hawai‘i Institute of Marine Biology (HIMB) within the University of Hawai‘i. Elizabeth first came to Australia on a Fulbright Scholarship to conduct pre-doctoral research at JCU (1999-2001) and was subsequently a Research Assistant at AIMS (2001-2003). She received a second Fulbright Fellowship to return to AIMS for collaborative work in 2007 and received her Ph.D. from the University of California, Santa Barbara in 2009. Most recently, prior to starting at HIMB, Elizabeth was based in Sydney, first as an US National Science Foundation International Postdoctoral Fellow at the University of Technology Sydney and later as an ARC DECRA Fellow at Macquarie University. Elizabeth’s research focuses broadly on the intersection of human impacts and animal behaviour and how this interface can lead to cascading effects through food webs. As part of this work, she is currently leading a project investigating whether application of remote sensing tools to this area can be used as the basis for a freely-available conservation tool for assessing marine reserve effectiveness and fisheries impacts on coral reefs throughout the world.

Website: www.oceansphere.org


Australian Research Council Pandora

Partner Research Institutions

Partner Partner Partner Partner
Coral Reef Studies