Fish diet heats up marine biodiversity hotspot
Scientists have discovered a never-before-seen biodiversity pattern of coral reef fishes that suggests some fishes might be exceptionally vulnerable to environmental change. A new study shows plank
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au
Abstract: Biogeographic transition zones in marine temperate systems are often hotspots of biodiversity, with high levels of resilience to short-term climate shifts due to naturally occurring cyclic oscillations of oceanographic conditions. However, these environments are likely vulnerable to a steady global warming scenario in which these cyclical conditions could be disrupted. Here, we evaluate how changes in local oceanography affect the structure of rocky reef fish assemblages over a period of 50 yr in a biogeographic transition zone. Using a 12 yr time series of rocky reef fish assemblage structure, we identified the set of oceanographic variables that most influenced assemblage dynamics. Descriptive and predictive models (multivariate regression trees) were compared to observed data using the area under the curve. Winter northward wind stress and sea surface temperature (SST) were the most important drivers of change in assemblage structure. Only warmer years had indicator species with warm-temperate or tropical affinities. A fish assemblage ‘tropicalization’ index was developed in response to both local-spatial resolution and short-term environmental variation (1993−2011), and to regional spatial resolution and long-term SST (1960−2012). Predictive modelling for the last 50 yr revealed that species with tropical affinities have increased in frequency compared to cold-temperate species, coinciding with the trend of increasing mean winter SST. Since the mid-1980s, warm-temperate and tropical species have responded rapidly to more frequent warm winters, suggesting that species distributions are shifting polewards. Our results support a hypothesis that cold species retreat more slowly than the advance of warm species. We discuss the importance of transition zones as ‘barometers’ of climate change.
Biography: Emanuel Gonçalves is Associate Professor at ISPA – Instituto Universitário (Portugal) and is the President of the Board of ISPA,CRL, the cooperative that runs the Institute. Emanuel coordinates the Eco-Ethology Research Unit of ISPA, classified as Excellent in the last evaluation process of the Portuguese Science and Technology Foundation. Currently, this research Unit integrates a large center which includes 6 universities and 4 former research centers, MARE – Marine and Environmental Sciences Centre, where he is a Vice-President. His research interests are marine conservation (in particular the role of marine protected areas for ocean governance), marine ecology and connectivity in marine ecosystems, behaviour of marine animals, in particular fish, larval ecology and recruitment. He has been involved in the creation, monitoring and implementation of Marine Protected Areas in several regions, including discussions on the high seas and coordinates the studies which lead to the implementation and monitoring of MPAs in Portugal. He was deputy-head of the Portuguese Task Group for Maritime/Marine Affairs where he contributed to the approval and implementation of the National Ocean Strategy. He was coordinator of the European Union Group that led the negotiations on marine and coastal issues at the 9th Conference of the Parties of the Convention of Biological Diversity which approved the CDB Scientific Criteria for Identifying Ecologically or Biologically Significant Areas (EBSAs) in the marine realm (the Azores Criteria). He is a member of the National Council of Environment and Sustainable Development (Portugal).
Scientists have discovered a never-before-seen biodiversity pattern of coral reef fishes that suggests some fishes might be exceptionally vulnerable to environmental change. A new study shows plank
Scientists say stable seafood consumption amongst the world’s poorer coastal communities is linked to how local habitat characteristics influence fishing at different times of the year. In the co
An international group of scientists is predicting markedly different outcomes for different species of coral reef fishes under climate change – and have made substantial progress on picking the ‘
New research has found as climate change causes the world’s oceans to warm, baby sharks are born smaller, exhausted, undernourished and into environments that are already difficult for them to survi
Abstract: The vast majority of reef fishes have a life history consisting of a pelagic larval phase of typically 20 to 60 days, followed by larval settlement where they remain through their juvenile a
Abstract: Social networks have been and remain important across the Pacific Islands, and beyond, for building and maintaining social-ecological resilience. However, there is little quantitative infor
Abstract: The global conservation community is comprised of a range of organisations, processes, and professionals. Given the diversity of these actors, and the complexity of the systems that conser
Abstract: Seasons create a rhythm in nature and, by extension, in the lives of people who depend directly on natural resources. However, our understanding of how seasons affect the ways that people
Abstract: Oceanic shark populations have declined 77% over the past 60 years as a result of overexploitation in fisheries. However, sustainable shark management is limited to a few developed nations
Abstract: Vertigo3 is a new class of small, fast and agile ‘true-flight’ underwater glider, purposely designed for robotic, artificial intelligence-assisted broadscale marine surveys, and capable
Abstract: Recurrent marine heat waves are leading to widespread coral bleaching, transforming the structure and function of tropical coral reefs. Past bleaching events have highlighted large variatio
Abstract: Shallow-water tropical seascapes typically include a range of habitat types such as coral reefs, mangroves, macroalgal and seagrass beds. These habitats can occur in close proximity and are
ARC Centre of Excellence for Coral Reef Studies
James Cook University Townsville
Queensland 4811 Australia
Phone: 61 7 4781 4000
Email: info@coralcoe.org.au